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Abstract. In this expository article, we discuss the problem of the containment of a non-zero function

satisfying various boundary regularity conditions in the de Branges-Rovnyak space H(b). We review what is
known, and highlight the connection of this problem to the Korenblum-Roberts cyclicity theory in Bergman-

type spaces, the works of Khrushchev on simultaneous approximation by polynomials, and some aspects

of the Beurling-Malliavin theory. New proofs of previously known results are given to emphasize these
connections. As a new contribution, we fully characterize the symbols b for which the space H(b) contains

a non-zero function with C∞ extension to the boundary. This extends an earlier result of Dyakonov and

Khavinson dealing with the case of inner b. We end the article by stating a few open problems.

1. Introduction

1.1. Smoothness classes. Let D := {z ∈ C : |z| < 1} denote the open unit disk of the complex plane C.
If an analytic function f : D → C extends continuously to the boundary T := {z ∈ C : |z| = 1}, then we say
that f is a member of the disk algebra A. In this article, we will study functions which admit an extension
to T with additional regularity properties. We ask if a non-zero function with such properties can be found
in a de Branges-Rovnyak space H(b), a classical family of spaces of analytic functions in D parametrized by
analytic selfmaps b : D → D.

We will restrict our attention to a few often appearing regularity classes.

(1) For an integer n ≥ 1, we denote by An the class of functions in D for which the n:th derivative f (n)

is contained in A. We use the conventions A0 := A and A∞ := ∩n≥0An = A ∩ C∞(T).
(2) For α ∈ (0, 1], the analytic Hölder class Λα

a consists of those functions f ∈ A which satisfy the
modulus of continuity estimate

|f(z)− f(w)| ≤ Cf |z − w|α, z, w ∈ D ∪ T,

for some constant Cf > 0.

(3) The analytic Gevrey class Gβ , β ∈ (0, 1], consists of those f ∈ A whose Fourier coefficients f̂(n),
n ≥ 0, decay rapidly in the sense that

|f̂(n)| ≤ Cf exp(−Dfn
β)

for some Cf , Df > 0. We have Gβ ⊂ A∞ for every β, but the Gevrey classes are much smaller than
A∞. Note that the class G1 consists precisely of those functions f in D which have a holomorphic
extension to a disk containing D ∪ T.

To a reader unfamiliar with the spaces H(b), it might come as a surprise that the question of existence of a
regular function in anH(b)-space doesn’t have a trivial answer. After all, most spaces of analytic functions in
D appearing in function and operator theory, such as Hardy, Bergman and Dirichlet-type spaces, are readily
seen to contain all functions with a sufficiently smooth extension to T. The special case of H(b)-spaces
is much different, and one of the purposes of this article is to explain how this problem connects to some
deep results of 20th century analysis: Korenblum’s work on cyclic singular inner functions, Khrushchev’s
results on simultaneous approximation by polynomials, and even some aspects of the Beurling-Malliavin
theory. These connections will be made explicit in Section 3 below, which constitutes the main part of this
article. Certain results that we present are new, but for the most part the content of the article deals with
previously established theory. The focus is on presenting a unified account of the containment problem, and
its relationship to other parts of operator theory and complex analysis. For this reason, we often provide
new proofs of previously known results.
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A non-zero function analytic in a disk larger than D (that is, a function in G1) is contained in a given
space H(b) if and only if b satisfies some very particular and readily verified conditions. More precisely, we
must have either that b(λ) = 0 for some λ ∈ D, or that

(1.1)

∫
T
log(1− |b|2) dm > −∞.

Here dm is the Lebesgue measure on T, and b is defined on T in the sense of its non-tangential boundary
values (which exist almost everywhere with respect to dm). This result is well-known and essentially
contained in the standard reference books by Sarason [34] and Fricain-Mashreghi [14], [15]. Condition (1.1)
is known to characterize the symbols b for which the analytic polynomials are contained and dense in the
space H(b), and is known to be equivalent to b being a non-extreme point of the unit ball of H∞, the algebra
of bounded analytic functions in D. We will therefore be concerned with the case when the left-hand side
integral in (1.1) diverges, and so b and the corresponding space H(b) are extreme. The goal is to convince
the reader that the convergence of the integral (1.1) over sets smaller than T is decisive for existence of
non-zero functions of a given regularity in the space H(b).

1.2. Construction of the space. For p ∈ (0,∞), the Hardy space Hp is defined, as usual, to be the space
of analytic functions satisfying the uniform integral mean bound

sup
r∈(0,1)

∫
T
|f(rζ)|pdm(ζ) < ∞.

The earlier mentioned algebra H∞ consists of analytic functions which are bounded in D. It is well known
that each function f ∈ Hp admits a non-tangential boundary value f(ζ) for almost every ζ ∈ T with respect
to dm, and that we have

∫
T |f(ζ)|

p dm < ∞. Through the identification of the function f ∈ Hp with its
boundary function on T, we may consider Hp as a subspace of Lp(dm). For p ∈ [1,∞], we have also the
alternative description in terms of Fourier coefficients:

(1.2) Hp :=
{
f ∈ Lp(dm) : f̂(n) = 0, n < 0

}
.

That is, Hp is the closed subspace of Lp(dm) consisting of functions with vanishing negative Fourier coeffi-

cients f̂(n).

Given analytic b : D → D, we have the Nevanlinna factorization (see [17, Chapter II] for details):

(1.3) b = cBSνb0,

where c is a unimodular constant (for convenience we will assume c = 1), B is the usual Blaschke product
corresponding to the zero set {λk}k of b in D

B(z) =
∏
k

|λk|
λk

λk − z

1− λkz
, z ∈ D,

Sν is a singular inner function corresponding to a finite singular non-negative Borel measure ν on T:

(1.4) Sν(z) = exp
(
−

∫
T

ζ + z

ζ − z
dν(ζ)

)
, z ∈ D,

and b0 is the outer factor

b0(z) = exp
(
−

∫
T

ζ + z

ζ − z
log |b(ζ)|

)
, z ∈ D.

To avoid trivialities, we will always assume that b is non-constant.

The space H(b) can be defined as the Hilbert space of analytic functions on D with the following repro-
ducing kernel:

(1.5) kb(λ, z) :=
1− b(λ)b(z)

1− λz
= (1− b(λ)b(z))kλ(z).

Here kλ(z) := (1− λz)−1 is the Szegö kernel. More precisely, we require that

(1.6)
〈
f, kb(λ, ·)

〉
b
= f(λ), λ ∈ D.
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where
〈
·, ·
〉
b
denotes the inner product of H(b). This way of defining the space doesn’t really give us any

clues as to what functions may be contained in H(b), beside kb(λ, ·). In the special case that b = BSν = θ
is an inner function, the space H(b) is known to coincide isometrically with the so-called model space Kθ

which is the orthogonal complement of the subspace θH2 = {θh : h ∈ H2} in H2:

(1.7) Kθ :=
{
f ∈ H2 :

〈
f, θh

〉
= 0, h ∈ H2

}
.

Above
〈
·, ·
〉
denotes the inner product of L2(dm). For more background regarding model spaces, see [16].

In the general case, we can construct the space H(b) as the image of the operator

(1.8)
√

I − TbTb : H
2 → H2.

Here I denotes the identity operator on H2, and Tb, Tb are Toeplitz operators (see Section 2.1). The operator

in (1.8) is injective unless b = θ is an inner function, in which case
√
I − TθTθ is simply the orthogonal

projection from H2 onto the space Kθ in (1.7). If b is not an inner function, then to each f ∈ H(b) there
corresponds a unique g ∈ H2 satisfying f =

√
I − TbTb g, and for fi =

√
I − TbTbgi, i = 1, 2, we have〈

f1, f2
〉
b
:=

〈
g1, g2

〉
.

A short computation reveals that
kb(λ, ·) = (I − TbTb)kλ ∈ H(b),

with kb as in (1.5), is indeed the reproducing kernel of H(b). We note that the space H(b) is always contained
in H2.

1.3. Where we are going. The two objects which contain the information we are trying to extract are
the singular measure ν in (1.3), and the measurable non-negative function

(1.9) ∆b(ζ) :=
√

1− |b(ζ)|2, ζ ∈ T.
The following is a brief outline of our strategy, in which the weight (1.9) plays the leading role. It is known
that if f ∈ H(b), then Tbf is contained in H(b) also, and can be represented as P+k∆b, an orthogonal
projection to H2 of the function k∆b ∈ L2(dm), where k ∈ L2(dm) (see Proposition 2.1 below). Generally
speaking, if f satisfies a regularity condition on T, then Tbf satisfies a similar regularity condition (see
Proposition 2.3 and Remark 2.5 below). In this way, we see that regular functions in H(b) correspond to
functions on T of the form k∆b which have regular projections. Extensions of Khrushchev’s approximation
theory from [22] and simple special cases of the Beurling-Malliavin theorem from [8] can be used to study
these projections. In the transformation f 7→ Tbf we lose some information: the operator Tb has a kernel
which equals Kθb , θb being the inner factor of b. To study regular functions in the kernel, we use the
Korenblum-Roberts theory of inner functions from [23], [24], [25] and [33].

For the most part we provide complete proofs. At some points, we refer to prior works for details of the
less important parts. At the end of our discussion, we will have presented a proof of the following theorem.
The definition of a Carleson set, appearing in the following statement, is given in (3.4) below.

Theorem. Let b = BSνb0 be the Nevanlinna factorization of b.

(A) The space H(b) always contains a non-zero function in the disk algebra A.

(B) The space H(b) contains a non-zero function in the Hölder class Λα
a , α ∈ (0, 1], if and only if it

contains a non-zero function in A∞. This occurs if and only if at least one of the following three
conditions is satisfied:
(i) there exists λ ∈ D for which b(λ) = 0,
(ii) there exists a Carleson set E of zero Lebesgue measure for which ν(E) > 0,
(iii) there exists a Carleson set E of positive Lebesgue measure for which

∫
E
log∆b dm > −∞.

(C) The space H(b) contains a non-zero function in the Gevrey class Gβ for β ∈ [1/2, 1) if and only if
at least one of the following two conditions is satisfied:
(i) there exists λ ∈ D for which b(λ) = 0,
(ii) there exists an arc I of T for which

∫
I
log∆b dm > −∞.

(D) The space H(b) contains a non-zero function which extends analytically to a disk larger than D if
and only if at least one of the following two conditions is satisfied:
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(i) there exists λ ∈ D for which b(λ) = 0,
(ii) the following global integrability condition holds:

∫
T log∆b dm > −∞.

Except for part (B), which is an extension of a result of Dyakonov and Khavinson from [12], the statements
are not new. Part (B) follows from Theorem 3.8 and Remark 3.19 below. Part (A) is known in stronger
form as a universal density theorem of H(b) ∩ A in H(b) from [3]. We will give a new proof of statement
(A) which relies on Khrushchev’s theory from [22] (see Corollary 3.7 below). Part (C) is from [32], and we
give a condensed version of the proof (Theorem 3.22 below). Part (D) has already been mentioned above,
it is a well-known result of the theory of H(b)-spaces.

Evidently, the Gevrey classes Gβ corresponding to the parameter range β ∈ (0, 1/2) are missing in the
above description. In this case, a statement similar to part (C) above is very likely to hold. More on this
will be said in Section 4, where we state a related conjecture. The reader will hopefully be inspired to fill
in this annoying gap.

2. Preliminaries

We will need only very few background results on H(b)-spaces, and mainly those which pertain to the
action of coanalytic Toeplitz operators. We start this section by presenting those results. Then, we introduce
a few useful Hilbert spaces, and discuss mapping properties of coanalytic Toeplitz operators on them. We
end the section by a brief reminder of Cauchy duality between spaces of analytic functions in D.

2.1. Projections and Toeplitz operators. Throughout the article, the operator

P+ : L2(dm) → H2

will denote the orthogonal projection. In terms of Fourier series

g =
∑
n∈Z

ĝ(n)ζn, ζ ∈ T

we have
P+g =

∑
n≥0

ĝ(n)ζn.

The Fourier series representation shows that if g ∈ C∞(T), then P+g ∈ A∞ = A ∩ C∞(T). Indeed,
g ∈ C∞(T) if and only if we have the spectral decay |ĝ(n)| ≤ CA|n|−A for every A > 0, where CA > 0 is
some constant.

For a bounded function g on T, the Toeplitz operator Tg : H2 → H2 is defined as

Tg : f 7→ P+gf.

We shall exclusively be interested in operators with coanalytic symbols g = h, h ∈ H∞. The space H(b)
is invariant under the coanalytic Toeplitz operators (see [15, Theorem 18.13]). In particular, it is invariant
under the backward shift operator L := Tz,

(2.1) Lf(z) =
f(z)− f(0)

z
.

The kernel of the coanalytic Toeplitz operator Th equals the model space Kθh defined in (1.7), where θh is
the inner factor of h. Thus Th is injective if and only if h is outer.

An important operator corresponds to the symbol b. It has special properties.

Proposition 2.1. Let b0 be the outer factor of b. The operator Tb maps H(b) into H(b0), and moreover,
for each f ∈ H(b) we have that

Tbf = P+∆bk

for some k ∈ L2(dm), where ∆b is given by (1.9).

The statement is well-known to specialists of the H(b)-theory, and follows from a computation and an
application of Douglas’ criterion from [11] on operator range containment. For a proof see, for instance,
[15, Theorem 17.8 and Corollary 25.2]. In fact, all projections of the type P+∆bk are contained in H(b).

Proposition 2.2. For any k ∈ L2(dm), the function P+∆bk is contained in H(b).



REGULAR FUNCTIONS IN DE BRANGES-ROVNYAK SPACES 5

Proof. By [15, Theorem 17.9 and Theorem 20.1], if k0 is a function on T which satisfies

(2.2)

∫
T
|k0|2∆2

bdm < ∞,

then P+∆
2
bk0 ∈ H(b). Without loss of generality we may assume that that k ∈ L2(dm) lives only on the set

{ζ ∈ T : ∆b(ζ) > 0}, this set being well-defined up to a set of dm-measure zero. Then clearly k0 := k/∆b

satisfies (2.2), and so P+∆
2
bk0 = P+∆bk ∈ H(b). □

2.2. Useful Toeplitz-invariant Hilbert spaces. Our study will be focused on the regularity classes Λα
a ,

A∞ and Gβ . Topologies on these spaces may be defined, which are however quite complicated from the point
of view of functional analysis. So are their duals. It will be convenient to replace these spaces with related
ones which are topologically simpler. We will see that the containment problem studied here is insensitive
to this replacement.

With the above remark in mind, we introduce the Hilbert spaces H2
α, α ∈ R, which we define as

(2.3) H2
α :=

{
f(z) =

∑
n≥0

fnz
n : ∥f∥2H2

α
:=

∑
n≥0

(n+ 1)α|fn|2 < ∞
}
,

and the Gevrey-type Hilbert spaces GH2
β,c, β ∈ (0, 1), c ∈ R, which are

(2.4) GH2
β,c :=

{
f(z) =

∑
n≥0

fnz
n : ∥f∥2GH2

β,c
:=

∑
n≥0

exp(cnβ)|fn|2 < ∞
}

The following is the smoothness preservation property of coanalytic Toeplitz operators which we will
exploit.

Proposition 2.3. If α ≥ 0, then H2
α is invariant for the coanalytic Toeplitz operators. If c ≥ 0, then GH2

β,c

is invariant for the coanalytic Toeplitz operators.

Sketch of proof. Note that the backward shift operator L = Tz is a contraction on the Hilbert space H2
α

whenever α ≥ 0, and on GH2
β,c whenever c ≥ 0. Therefore, in both cases, to each h ∈ H∞ there corresponds

an operator h(L) acting on the space, defined through the Sz. Nagy-Foias functional calculus (see [35,
Chapter III]). For a polynomial p, we see readily that p(L) is the coanalytic Toeplitz operator with symbol
p(z). An approximation argument extends this argument to h ∈ H∞, and identifies h(L) as the coanalytic
Toeplitz operator with symbol h(z). □

Corollary 2.4. The space A∞ is invariant for the coanalytic Toeplitz operators.

Proof. It suffices to note that f ∈ A∞ if and only if f ∈ H2
α for all α ≥ 0, and apply Proposition 2.3. □

Remark 2.5. Other spaces invariant for the coanalytic Toeplitz operators include the Hölder classes Λα
a for

α ∈ (0, 1), and the Gevrey classes Gβ for β ∈ (0, 1] (this claim follows from (2.7) below and Proposition 2.3).
Notably, the disk algebra A fails to be invariant for certain coanalytic Toeplitz operators. If Th : A → A
is indeed bounded, then the adjoint operator under the Cauchy duality (see Section 2.4 below) is readily
identified with the multiplication operator g 7→ hg on the dual space A∗, which turns out to be the space
K of Cauchy transforms of Borel measures on T. However, according to [10, Chapter 6], not every bounded
analytic function h is a multiplier on K.

2.3. Integral norms. At a later stage, it will be convenient to replace the norms on H2
α and GH2

β,c in (2.3)

and (2.4) by integral expressions.

For α < 0, we can identify H2
α with the following space P2(dAα) of analytic functions:

(2.5) P2(dAα) :=
{
f ∈ Hol(D) :

∫
D
|f(z)|2dAα(z) < ∞

}
,

where

dAα(z) := (1− |z|)−α−1dA(z)
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and dA is the area measure on D. The square root of the integral expression in (2.5) defines a norm which
is equivalent to the norm ∥ · ∥H2

α
in (2.3) (see [19, Chapter 1] for a proof), and the spaces H2

α and P2(dAα)
coincide as sets. For α ∈ [0, 2) we instead have that

∥f∥2H2
α
≃ |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|)1−αdA(z)(2.6)

= |f(0)|2 +
∫
D
|f ′(z)|2dAα−2(z).

Similar equivalences exist also for α ≥ 2 and involve higher derivatives of f , but we shall not need them.
Note that by (2.6) the Hölder class Λγ

a is contained in H2
α whenever γ > α/2. The containment is readily

established by using the Hardy-Littlewood characterization of Λγ
a as the space of analytic functions f in D

which satisfy the growth condition |f ′(z)| ≤ Cf (1− |z|)γ−1 (see [39, Chapter VII, Section 5]).

The corresponding result for GH2
β,c is only a bit more complicated, and looks as follows. We have the

readily verified set equality

(2.7) Gβ =
⋃
c>0

GH2
β,c.

If we set β̃ := β
1−β for β ∈ (0, 1), and

(2.8) Eβ̃,c(z) := exp
(
− c(1− |z|)−β̃

)
, z ∈ D,

then we have the set equality

(2.9)
⋃
c<0

GH2
β,c =

⋃
c>0

P2(Eβ̃,cdA)

where

(2.10) P2(Eβ̃,cdA) :=
{
f ∈ Hol(D) :

∫
D
|f(z)|2Eβ̃,c(z)dA(z) < ∞

}
.

The square root of the integral expression on the right-hand side of (2.10) is the norm on P2(Eβ̃,cdA).
The set equality (2.9) follows from a rather messy computation of the moments of the weights Eβ̃,c, which
we prefer to skip. See [32, Lemma 5.7] for details. Moreover, in (2.9), for any fixed index c < 0, there exists
c′ > 0 such that GH2

β,c is continuously embedded in P2(Eβ̃,c′dA), and a converse statement with the roles

of the two spaces reversed holds too.

2.4. Cauchy duality. This concept is a convenient tool in the study of containment of regular functions
in Kθ and H(b). Let X be a topological space of analytic functions on D. In our presentation, usually X
will consist of bounded functions, contain the polynomials, and we shall often be able to reduce to the case
of X being a Hilbert space. It is sometimes the case that X admits a dual space X∗ which is itself a space
of analytic functions on D, with the duality pairing between the spaces realized by

(2.11)
〈
f, g

〉
:= lim

r→1

∫
T
f(rζ)g(rζ)dm(ζ), f ∈ X, g ∈ X∗.

Such duality pairings are called Cauchy pairings, and X∗ is then the Cauchy dual to X. In the case that
both f and g are members of H2, the definition (2.11) reduces to〈

f, g
〉
=

∫
T
fg dm.

This important relation shows that
〈
f, g

〉
= 0 if and only if the two functions f and g are orthogonal in

H2. It is also the reason for why we use the same notation for the Cauchy pairing and the L2(dm)-inner
product.

We shall not dwell on matters such as conditions for the existence of a Cauchy dual. In the particular
examples X which will appear in this article, the Cauchy dual X∗ will be readily identified as a well-known
Banach space of functions. For instance, the disk algebra X = A has as its Cauchy dual the space X∗ = K
of Cauchy transforms of Borel measures on T (see [10, Chapter 4] for details). If X is a Hilbert space, then
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so is X∗, and the weak-star topology on X∗ coincides with the weak topology on X∗. In particular, the
space H2

α defined in (2.3) is the Cauchy dual to H2
−α, and the space GH2

β,c defined in (2.4) is the Cauchy

dual to GH2
β,−c.

3. Regular functions in H(b)

This section constitutes the core of the article. Our developments will lead to a proof of the theorem
stated in Section 1.

3.1. Continuous functions in model spaces. Before treating the general case, it is necessary to under-
stand the containment problem in the special case that b = θ is inner, and so when H(b) reduces to a model
space Kθ defined in (1.7).

If we have θ(λ) = 0 for some λ ∈ D, then Kθ contains the rational function

(3.1) kλ(z) =
1

1− λz
∈ Kθ.

Thus Kθ contains a non-zero function of ultimate regularity, since kλ is holomorphic in a neighbourhood of
the closure of D. In the case that θ does not vanish in D, we have to work much harder to exhibit a non-zero
function in Kθ ∩ A.

Example 3.1. Consider the singular inner function

(3.2) θ(z) = exp
(
− 1 + z

1− z

)
, z ∈ D.

It is quite a brain teaser to find a non-zero function in Kθ which is simultaneously a member of the disk
algebra A. Here is one example:

(3.3) f(z) :=
θ(z)(1− z)− θ(0)− θ′(0)z + θ(0)z

z2
, z ∈ D.

To see that f ∈ A, note that θ is holomorphic in C \ {1}, and so f extends to a continuous function on
T \ {1}. Moreover, since θ is bounded in D ∪ T, it is clear from the formula (3.3) that

lim
z→1

f(z) = f(1) := −θ′(0).

The singularity at z = 0 in the expression for f is easily seen to be removable. Thus f ∈ A. To see that
f ∈ Kθ, it suffices to verify that f ⊥ θH2. Recall that L = Tz denotes the backward shift operator in (2.1).
One may perform a simple computation to see that

f = (L2 − L)θ.

If h ∈ H2, we have 〈
f, θh

〉
=

〈
θ, (z2 − z)θh

〉
=

〈
1, (z2 − z)h

〉
= 0,

where we used that multiplication by θ is an isometry in H2. One may also see that f ∈ Kθ by noting
that f = Tz−1Lθ and recalling the well-known facts that Lθ ∈ Kθ and that Kθ is invariant for coanalytic
Toeplitz operators.

Although it might not be immediately clear, setting instead f := (L− 1)nLθ for some integer n > 1 will
lead to f having a higher degree of regularity on T. This observation will eventually lead us to a theorem
of Dyakonov-Khavinson from [12] on characterization of the non-triviality of the intersection Kθ ∩ A∞.

In general, we have the following result from [1], which we will refer to as Aleksandrov’s theorem.

Theorem 3.2. For every inner function θ, the intersection Kθ ∩ A is norm-dense in Kθ. In particular,
Kθ ∩ A always contains a non-zero function.

The proofs of this theorem which are known to the author all go by duality. One proof, given in the
book [10, Chapter 8.5] by Cima, Matheson and Ross, is based on Aleksandrov’s follow-up work [2], and
establishes slightly more (namely weak-star density of Kθ ∩ A in Kθ ∩H∞). The following proof has been
shown to the author by Aleman.
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Proof of Theorem 3.2. Assume that a function g ∈ Kθ is orthogonal to all functions in Kθ ∩ A. We must
show that g ≡ 0. The trick is to interpret g as an element of the Cauchy dual K = A∗ which is the space
of Cauchy transforms of finite Borel measures on T (see [10] for details, the exact structure of the space
will not be important in the proof). Then the assumed orthogonality implies that g annihilates the linear
manifold Kθ ∩A. By the Hahn-Banach separation theorem, we have that g lies in the weak-star closure of
the convex subset {θh}h∈H2 in K. Indeed, in the contrary case the separation theorem gives us an f ∈ A
which satisfies

〈
f, g

〉
̸= 0 and

〈
f, θh

〉
= 0 for all h ∈ H2. The second expression is equivalent to f ∈ Kθ ∩A,

and then by the first expression we reach a contradiction to our orthogonality assumption on g. Thus g
indeed lies in the weak-star closure of {θh}h∈H2 , which equals the intersection of all weak-star closed subsets
of K containing {θh}h∈H2 . One such set is

θ(K) := {f ∈ K : f/θ ∈ N+},

where N+ denotes the usual Smirnov class of quotients of bounded analytic functions on D with outer
denominator. See [10, Theorem 8.5.4] for a proof of this claim. In particular, g ∈ θ(K), so in fact g = θr
for some r ∈ H2. But then g ∈ Kθ ∩ θH2 = {0}, and the proof is complete. □

As for sharpness, it was observed by the author and Limani in [28] that Aleksandrov’s theorem holds
with A replaced by the space U of uniformly convergent Taylor series in D. The proof is as above, but with
the critical part (namely, the application of [10, Theorem 8.5.4]) replaced by a corresponding property of
the Cauchy dual of U . Conversely, it is known that A in Theorem 3.2 cannot be replaced by any class of
functions defined by their modulus of continuity (see [30]).

3.2. Smooth functions in model spaces. Constructive approaches to Aleksandrov’s Theorem 3.2 are
lacking, but replacing A by the smaller class of A∞ leads to a setting in which constructions are available.
Their essence is contained in Example 3.1. There, we had

f = (L2 − L)θ = P+(z
2 − z)θ.

We computed explicitly that f ∈ Kθ ∩ A. Without carrying out the computation, one may expect that f
satisfies some additional regularity by noticing that multiplication by z2 − z removed the discontinuity of
θ at z = 1. By exchanging the symbol z2 − z by (z − 1)nz, which has a zero at z = 1 of higher order, we
may in fact ensure that (z − 1)nzθ is continuously differentiable any finite number of times on T. Then
P+(z

n+1 − zn)θ will be in An for some n ≥ 1.

Based on this idea, one is lead to wonder what closed sets E ⊂ T are zero sets of analytic functions m
with a high degree of smoothness. The question has been answered by Carleson in [9], who showed that
E ⊂ T is a zero set of a function m ∈ An, n ≥ 1, if and only if E is a closed set of zero Lebesgue measure
and satisfies

(3.4)
∑
ℓ

|ℓ| log(1/|ℓ|) < ∞,

where {ℓ} is the set of maximal open arcs complementary to E in T. Sets satisfying (3.4) are nowadays
known as Carleson sets, and in our presentation they will appear both as sets of zero and positive Lebesgue
measure. Taylor and Williams in [36] later extended Carleson’s argument to m ∈ A∞. Another construction
is given in the book [19, Lemma 7.11] by Hedenmalm, Korenblum and Zhu. More precisely, given a Carleson
set E, there exists an outer function m ∈ A∞ which satisfies for any A > 0 the estimate

(3.5) |m(z)| = O
(
(dist(z, E))A

)
, z ∈ D ∪ T

and a similar estimate holds with m replaced by any derivative m(n). From this, we derive the sufficient
condition of the following theorem due to Dyakonov and Khavinson from [12].

Theorem 3.3. Let θ = BSν be an inner function, where B is a Blaschke product and Sν is singular inner.
The following two statements are equivalent.

(i) The intersection A∞ ∩Kθ contains a non-zero function.
(ii) Either θ(λ) = 0 for some λ ∈ D, or ν(E) > 0 for some Carleson set E of Lebesgue measure zero.
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Proof of the sufficiency part (ii) ⇒ (i) of Theorem 3.3. If θ(λ) = 0, then Kθ contains the smooth function
kλ in (3.1). If ν(E) > 0 for a Carleson set of zero Lebesgue measure, then we may suppose that θ = Sν|E ,
where ν|E is the restriction of ν to E. This follows since KSν|E ⊂ Kθ. Under this assumption, from (1.4)
we deduce that

|θ(n)(z)| = O
(
dist(z, E)−2n

)
, z ∈ (D ∪ T) \ E.

If m satisfies (3.5), then it readily follows that mzθ ∈ C∞(T). By Toeplitz invariance of Kθ and smoothness
preservation of P+ (recall the first paragraph of Section 2.1) we obtain

P+mzθ = TmLθ ∈ Kθ ∩ A∞.

The fact that the above smooth function is non-zero is a consequence of m being outer, which ensures
injectivity of Tm. □

The implication (i) ⇒ (ii) is much more difficult to prove. Dyakonov and Khavinson prove the implication
by using the Korenblum-Roberts theorem on cyclicity of singular inner functions in Bergman-type spaces.
We will describe this result in a short while, and also the related notion of splitting sequences which are
necessary to prove a generalization of the Dyakonov-Khavinson result for the general class of H(b)-spaces.

Remark 3.4. Carleson sets, and their generalizations, appear in numerous important recent works on the
subject of model spaces and singular inner functions. They appear in connection to the question of existence
of univalent maps in model spaces in the article [6] by Baranov and Fedorovskiy, and in a follow-up article
[5] by Baranov, Belov, Borichev and Fedorovskiy which fully answers the question. They apper also in
Ivrii’s description of the structure of the critical sets of inner functions with derivatives in the Nevanlinna
class. His deep results are found in [20]. Nicolau and Ivrii describe further interesting applications in [21].

3.3. Khrushchev’s theorems and regular functions in H(b). Sufficient conditions for H(b) to contain
a regular function follow from fundamental results of Khrushchev on the projection operator P+ : L2(dm) →
H2. In [22], he proved the following two striking theorems.

Theorem 3.5. Let E be any subset of T of positive Lebesgue measure. There exists a measurable function
k ∈ L2(T) which lives only on E for which we have

P+k ∈ A \ {0}.

Theorem 3.6. Let E be a subset of T of positive Lebesgue measure. There exists a measurable function
k ∈ L2(T) which lives only on E for which we have

P+k ∈ A∞ \ {0}
if and only if E contains a subset of positive Lebesgue measure satisfying the Carleson condition (3.4).

We refer the reader to [22], or alternatively to [18], for proofs of the above theorems. The original proofs
are non-constructive, but a constructive proof of Theorem 3.6 has been given in [29], using a technique not
much different than the one appearing in the proof of the implication (ii) ⇒ (i) of the Dyakonov-Khavinson
Theorem 3.3 above. The author knows of no constructive proof of the first of the above theorems.

Corollary 3.7. The intersection H(b) ∩ A always contains a non-zero function.

Proof. If the inner factor θb is non-trivial, then the claim follows from Aleksandrov’s Theorem 3.2, since
Kθb ⊂ H(b). In the other case ∆b =

√
1− |b|2 is not the zero function on T. Choose c > 0 so that

E := {ζ ∈ T : ∆b(ζ) > c}
has positive Lebesgue measure. By Theorem 3.5, there exists a function k ∈ L2(dm) living only on E for
which P+k ∈ A \ {0}. If we set

k0 =

{
k(ζ)/∆b(ζ) ζ ∈ E

0 ζ ̸∈ E

then since ∆b > c on E, we have k0 ∈ L2(dm) and

k0∆b = k.

By Proposition 2.2, we have P+k = P+k0∆b ∈ H(b) ∩ A, and the proof is complete. □
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The same proof as the one given Corollary 3.7 does not work in the smooth case, since the superlevel
set E appearing the proof might not have the necessary structure (namely, contain a Carleson set of
positive measure) to apply Khrushchev’s Theorem 3.6. Instead, a characterization of the non-triviality of
the intersection H(b) ∩ A∞ looks as follows. It is the main new result of this article, and constitutes a
generalization of the Dyakonov-Khavinson Theorem 3.3 to the context of de Branges-Rovnyak spaces.

Theorem 3.8. Let b = BSνb0 be the Nevanlinna factorization of b. The following two statements are
equivalent.

(i) The intersection H(b) ∩ A∞ contains a non-zero function.
(ii) Either b(λ) = 0 for some λ ∈ D, or ν(E) > 0 for some Carleson set E of zero Lebesgue measure,

or
∫
E
log∆b dm > −∞ for some Carleson set E of positive Lebesgue measure.

As in the case of Theorem 3.3, we first prove the easier sufficiency part, leaving the more difficult necessity
part to be proved below.

Proof of the sufficiency part (ii) ⇒ (i) of Theorem 3.8. Since Kθb ⊂ H(b), if either b(λ) = 0 or ν(E) > 0 for
some Carleson set of Lebesgue measure zero, then the result follows from the already proved part (ii) ⇒ (i)
of Theorem 3.3. It remains to show how the condition

∫
E
log∆b dm > −∞ for some Carleson set E of

positive Lebesgue measure implies the existence of a non-zero function in H(b) ∩ A∞. Elementary Hardy
space theory (see, for instance, [17, Chapter II]) ensures that there exists a bounded outer function h which
has boundary values satisfying

|h(ζ)| = ∆b(ζ)

for almost every ζ ∈ E. Furthermore, by Khrushchev’s Theorem 3.6 there exists a function k ∈ L2(dm)
living only on the Carleson set E for which we have P+k ∈ A∞ \ {0}. Note that

g := ThP+k = P+hk = P+ku∆b,

where u is a function which is unimodular on E, satisfies u = h/∆b on that set, and vanishes elsewhere
on T. Hence ku ∈ L2(dm). By Proposition 2.2, we have g ∈ H(b). Moreover, g is non-zero, since P+k is
non-zero, and h is outer, so that Th is injective. It remains to note that g ∈ A∞, which is consequence of
P+k ∈ A∞ and Corollary 2.4. □

3.4. Applications of cyclicity of singular inner functions. Having proved the implications (ii) ⇒ (i)
in Theorem 3.3 and Theorem 3.8, we turn to the reverse implications. In the first theorem, Dyakonov and
Khavinson proved the implication by exploiting cyclicity of certain singular inner functions. We will discuss
their proof in detail in order to emphasize its similiarity to the way in which we will prove the necessity
part (i) ⇒ (ii) in Theorem 3.8.

Let Y be a topological space of analytic functions on D. We shall assume, for convenience, that Y contains
all bounded analytic functions. We will say that a function g ∈ Y is cyclic if there exists a sequence of
polynomials {pn}n such that

gpn → 1

in the topology of Y . If the multiplication operator Mz = Tz : f(z) 7→ zf(z) acts on Y , and the polynomials
are dense in Y , then our notion of cyclicity coincides with the usual notion of g being a cyclic vector for
Mz.

Here is the way in which cyclicity of singular inner functions is relevant. The proof is inspired by the
argument of Dyakonov and Khavinson from [12].

Lemma 3.9. Assume that X is a Banach space of analytic functions on D which is invariant for the
backward shift operator L, that it admits a Cauchy dual X∗, and that the singular inner function θ is cyclic
in the weak-star topology on X∗. Then Kθ ∩X = {0}.

Conversely, if the linear manifold {θh}h∈H2 is contained but not weak-star dense in X∗, and X ⊂ H2,
then Kθ ∩X contains a non-zero function.

Proof. Suppose that the singular inner function θ is cyclic in the weak-star topology of X∗, and let g ∈ Kθ∩
X. We must show that g ≡ 0. Let {pn}n be a sequence of polynomials such that θpn → 1 in the weak-star
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topology on X∗. Then, we have
g(0) =

〈
g, 1

〉
= lim

n

〈
g, θpn

〉
= 0

where the last equality follows since g ∈ Kθ and the duality pairing coincides here with the inner product
on H2. For any positive integer k, we have that Lkg ∈ Kθ ∩X, by the L-invariance of X and Kθ. Thus the
same argument shows that Lkg(0) = ĝ(k) = 0, where ĝ(k) is the k:th Fourier coefficient of g. Thus g ≡ 0.

We prove the converse statement. Recall that the dual space of X∗ equipped with the weak-star topology
is X itself. It remains to note that if {θh}h∈H2 is not weak-star dense in X∗, then by the Hahn-Banach
separation theorem, a non-zero g ∈ X exists which satisfies

〈
g, θh

〉
= 0 for all h ∈ H2. By definition of Kθ,

this means that g ∈ Kθ ∩X. □

Remark 3.10. We shall not use the second statement in Lemma 3.9 in our proofs. However, note that if
X is a Hilbert space, then the two statements combine to show that Kθ ∩X = {0} if and only θ is cyclic in
the norm topology on X∗. We will come back to this observation in Section 4.

The implication (i) ⇒ (ii) in Theorem 3.3 now follows from the deep works of Korenblum in [23] and
[24], or Roberts in [33]. Recall the definition of the space H2

α in (2.3), P2(dAα) in (2.5) and that these
spaces in fact coincide as sets for α < 0, with the corresponding norms being equivalent.

The following is the Korenblum-Roberts cyclicity theorem.

Theorem 3.11. If α < 0, then the singular inner function Sν is cyclic in P2(dAα) if and only if

ν(E) = 0

for all Carleson sets E of zero Lebesgue measure.

Korenblum derived the theorem in [25] as a consequence of his more general results in [23] and [24].
Roberts gave an independent proof in [33].

Proof of the necessity part (i) ⇒ (ii) of Theorem 3.3. Assume that (ii) does not hold, so that θ = Sν for
ν which satisfies ν(E) = 0 for all Carleson sets of zero Lebesgue measure. By Theorem 3.11, Sν is cyclic
in X∗ = P2(dAα) = H2

α for every α < 0, and so an application of Lemma 3.9 to X = H2
−α shows that

Kθ ∩H2
−α = {0} for all α < 0. In particular, Kθ ∩ A∞ = {0}. □

Remark 3.12. The above proof shows that the condition on ν implies the stronger statement Kθ ∩H2
−α =

{0} for any α < 0. By the observation made in Section 2.3 regarding containment of Hölder class Λγ
a in H2

α

whenever γ > α/2, we deduce that the condition on ν ensures also Kθ ∩ Λγ
a = {0} for every γ ∈ (0, 1].

Remark 3.13. In the same article [12], Dyakonov and Khavinson mention also an application of the
existence of cyclic singular inner functions in the Bloch space B consisting of functions satisfying supz∈D(1−
|z|)|f ′(z)| < ∞. The Bloch space is the dual of the Sobolev-type space W 1,1

a consisting of all analytic
functions in D satisfying

∫
D |f ′|dA < ∞. By results of, for instance, [4], there exists a singular inner

function Sν which is weak-star cyclic in B. Then KSν
∩W 1,1

a = {0}, by Lemma 3.9. The triangle inequality
shows that the Wiener algebra W of Taylor series satisfying

∥f∥W :=
∑
k≥0

= |fk| < ∞

is contained in W 1,1
a . Thus, in particular, there exist θ for which Kθ ∩W = {0}. This observation has been

shown to the author by Limani.

3.5. Splitting sequences and their applications. In the case that b is an outer function, singular inner
functions in the previous proofs are replaced by splitting sequences.

Definition 3.14. Let YD be a topological space of functions on D, and YT be a topological space of functions
on T, both of which contain the analytic polynomials. A sequence {pn}n of analytic polynomials is (YD, YT)-
splitting if we have that

pn → 1 in YD

and
pn → 0 in YT,

with convergence in the sense of the corresponding topologies.
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Note that the existence of a (YD, YT)-splitting sequence is equivalent to the vector (1, 1) ∈ YD ⊕ YT being
cyclic for the operator Mz ⊕Mz, where Mzf(z) = zf(z) (assuming that YD and YT are invariant for Mz,
and that the polynomials are dense in both spaces).

Example 3.15. Khrushchev in [22] proved that if dm|E is the restriction of the Lebesgue measure on T to
a measurable subset E ⊂ T of positive Lebesgue measure, and α < 0, then a

(
P2(dAα), L

2(dm|E)
)
-splitting

sequence exists if and only if E contains no Carleson sets of positive Lebesgue measure (recall the definition
in (3.4)).

Example 3.16. Let P2(µ) be the closure of analytic polynomials in the Lebesgue space L2(µ), where µ is a
non-negative finite Borel measure compactly supported in the plane C. In the case that µ has the structure

dµ = dµ|D+ dµ|T
= G(1− |z|)dA(z) + w(z)dm(z)(3.6)

whereG is integrable on [0, 1) and w integrable on T, the existence of a
(
P2(µ|D), L2(µ|T)

)
-splitting sequence

is equivalent to the existence of a decomposition

(3.7) P2(µ) = P2(µ|D)⊕ L2(µ|T),

where P2(µ) and P2(µ|D) are the closures of polynomials in the corresponding Lebesgue spaces. The splitting
problem asks to characterize the pairs (G,w) in (3.6) for which decomposition (3.7) holds. Important works
on the splitting problem from the 1980s and 1990s include the theorem of Volberg from [37] (with a different
exposition by Volberg and Jöricke available in [38]) which deals with very rapidly decreasing G, and the
article by Kriete and MacCluer [26] which studies a more general case.

We shall soon see more examples of splitting sequences. First, we explain how they fit into our study. In a
typical application, YT is a weighted Lebesgue space L2(∆b dm), where ∆b is as in (1.9), and YD = X∗ is the
Cauchy dual of a space X of analytic functions on D. The following result is a counterpart to Lemma 3.9.

Lemma 3.17. Assume that b is outer, and X is a space of analytic functions on D which is invariant for
the coanalytic Toeplitz operators. If there exists a (X∗, L2(∆bdm))-splitting sequence, then

H(b) ∩X = {0}.

Proof. Similarly to before, we let g0 ∈ H(b) ∩X and show that g0 ≡ 0. By the assumed invariance of the
space X and by Proposition 2.1, we have that

g := Tbg0 ∈ H(b) ∩X.

Note that g ≡ 0 if and only if g0 ≡ 0, since b is outer and so Tb is injective. Thus it suffices to show that
g ≡ 0. Let {pn}n be a (X∗, L2(∆bdm))-splitting sequence. Since pn → 1 in X∗, we have

g(0) =
〈
g, 1

〉
= lim

n

〈
g, pn

〉
.

According to Proposition 2.1, we have

g = P+∆bk

for some k ∈ L2(dm). Since the polynomials pn are analytic, we have

lim
n

〈
g, pn

〉
= lim

n

〈
∆bk, pn

〉
= lim

n

∫
T
kpn∆b dm = 0

where the last equality holds since pn → 0 in L2(∆bdm) and k ∈ L2(dm) ⊂ L2(∆bdm). Thus g(0) = 0.
Since for any k ≥ 1 we have that Lkg satisfies the same assumptions as g, we conclude that the Fourier
series of g vanishes, and consequently g ≡ 0. □

The equivalent of the Korenblum-Roberts Theorem 3.11 for splitting sequences is the following result of
the author and Bergqvist from [7] generalizing Khrushchev’s result discussed in Example 3.15.
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Proposition 3.18. Let w be a non-negative integrable weight on T, and let α < 0. There exists a(
P2(dAα), L

2(w dm)
)
-splitting sequence if and only if∫

E

logw dm = −∞

for every Carleson set E of positive Lebesgue measure.

The above result was conjectured by Kriete and MacCluer in [26].

We are now ready to prove the remaining implication (i) ⇒ (ii) in Theorem 3.8. This will complete the
proof of the main new result of this article.

Proof of the necessity part (i) ⇒ (ii) of Theorem 3.8. Assume that (ii) does not hold. We will show the
stronger statement that if α < 0 and g ∈ H(b) ∩ H2

−α, then g ≡ 0. Note that the inner factor θb = BSν of
b fails to satisfy condition (ii) in the Dyakonov-Khavinson Theorem 3.3. If g ∈ Kθb , then by Remark 3.12
we have g ≡ 0, and the proof is complete. We may thus assume that g ̸∈ Kθb , so that for g0 := Tbg we
have g0 ≡ 0 if and only if g ≡ 0, since the kernel of Tb equals Kθb . By Proposition 2.1 and the Toeplitz
invariance in Proposition 2.3, we have g0 ∈ H(b0)∩H2

−α. Here b0 is the outer part of b. By our assumption,
Proposition 3.18 applies to the weight

w = ∆b =
√
1− |b|2 =

√
1− |b0|2

and provides us with a (P2(dAα), L
2(∆b dm))-splitting sequence. Since b0 is outer, by Lemma 3.17 we

obtain that g0 ∈ H(b0) ∩H2
−α = {0}. □

Remark 3.19. As in Remark 3.12, the proof actually shows that if the three conditions in (ii) of Theo-
rem 3.8 are all not satisfied, then H(b) ∩ Λγ

a = {0} for every γ ∈ (0, 1].

3.6. The curious case of the Gevrey classes. Recall the definition of the Gevrey classes Gβ in Section 1.
There occurs an interesting change in behaviour at β = 1/2. We will see that the model space Kθ contains
a non-zero function in G1/2 only in the trivial case that θ vanishes at some point in D. On the other hand,
H(b) may contain Gβ for any β ∈ (0, 1) even though its symbol b is extreme and does not vanish in D.

The following cyclicity theorem can be established by elementary means. We give only a brief sketch of
the proof. For a complete argument, see [32]. The article [13] by El-Fallah, Kellay and Seip proves a much
stronger result from which the below proposition also follows.

Proposition 3.20. Let c > 0 and P2(E1,cdA) be the space in (2.10). Then every singular inner function θ
is cyclic in P2(E1,cdA).

Sketch of proof. Note that E1,c(z) = exp
(
− c(1 − |z|)−1

)
decays exponentially as |z| → 1. From (1.4) we

deduce that θ−γ ∈ P2(E1,cdA) if γ > 0 is sufficiently small. If {pn}n is a sequence of polynomials for which
pn → θ−γ in the norm of P2(E1,cdA), then θγpn → 1 in P2(E1,cdA), and so θγ is cyclic. It remains to note
that product of finitely many bounded cyclic functions is cyclic (see, for instance, [32, Lemma 4.2]), and
that we may choose 1/γ to be an integer. □

Corollary 3.21. If θ is a singular inner function, then Kθ ∩ G1/2 = {0}.

Proof. Apply Lemma 3.9, Proposition 3.20 and the continuous containment remark following (2.9). The
result is that Kθ ∩ GH2

1/2,c = {0} for every c > 0. The corollary now follows from (2.7). □

We will say a word about non-triviality of the intersection Kθ ∩ Gβ for β ∈ (0, 1/2) in Section 4.

In the general case, we have the following result for H(b)-spaces.

Theorem 3.22. Let β ∈ [1/2, 1). The following two statements are equivalent.

(i) The intersection H(b) ∩ Gβ contains a non-zero function.
(ii) Either b(λ) = 0 for some λ ∈ D, or there exists an arc I of T for which

∫
I
log∆b dm > −∞.



14 BARTOSZ MALMAN

We will prove the implication (i) ⇒ (ii) by the use of an appropriate splitting sequence, similarly to the
proof of the corresponding implication in Theorem 3.8. On the other hand, the implication (ii) ⇒ (i) can
be established as a consequence of the Beurling-Malliavin theory.

In [8], Beurling and Malliavin gave a sufficient condition for an oscillating non-negative weight W defined
on R to admit a compactly supported function f with a Fourier transform

f̂(ζ) :=

∫
R
f(x)e−iζxdx, ζ ∈ R

satisfying the pointwise bound

|f̂(ζ)| ≤ W (ζ), ζ ∈ R.
See [8] for the precise formulation of the famous Beurling-Malliavin theorem. The theorem can be proved
by elementary means in the case that W is even and decreasing for ζ > 0 (see, for instance, [18, p. 276]).

Proposition 3.23. Assume that W is an even non-negative function on R, decreasing for ζ > 0. If∫
R

logW (ζ)

1 + ζ2
dζ > −∞,

then for any interval I ⊂ R, there exists a non-zero function h supported on I satisfying

|ĥ(ζ)| ≤ W (ζ).

In order to prove Theorem 3.22 we will need also a new splitting sequence. Recall the definition of the
space P2(E1,cdA) from Section 2.3. The following proposition has been established in [31].

Proposition 3.24. Let w be a non-negative integrable weight on T, and let c > 0. There exists a(
P2(E1,cdA), L2(w dm)

)
-splitting sequence if and only if∫

I

logw dm = −∞

for every arc I of T.

Proof of Theorem 3.22. To prove the implication (ii) ⇒ (i), we will use an argument due to Kriete and
MacCluer from [26]. In the case that b(λ) = 0, the rational function in (3.1) is contained in H(b), so (i)
holds. If b does not vanish in D, then it follows from (ii) that an arc exists I on which log∆b is integrable.
We may assume that I = {eit : t ∈ [0, c]} for some small c > 0. Let r be a non-zero function supported
inside the interval (0, c) which satisfies the spectral decay |r̂(ζ)| ≤ exp(−|ζ|β) for some fixed β ∈ [1/2, 1).
Such a function exists by Proposition 3.23. If we define the function rT supported on I by the equality

rT(e
it) := r(t), t ∈ [0, 2π),

then its n:th Fourier coefficient r̂T(n) satisfies

|r̂T(n)| =

∣∣∣∣∣
∫ 2π

0

rT(e
it)e−intdm(eit)

∣∣∣∣∣
=

∣∣∣∣∣
∫
R
r(t)e−int dt

2π

∣∣∣∣∣
=

|r̂(n)|
2π

≤ exp(−|n|β).
Thus g := P+rT ∈ Gβ \ {0}. We may now proceed as in the corresponding part of the proof of Theorem 3.8.
Take a bounded outer function h satisfying |h| = ∆b on I, and recall from Remark 2.5 that Gβ is invariant
for coanalytic Toeplitz operators. Then, as before, for some u unimodular on I, we have by Proposition 2.2
that

Thg = P+∆burT ∈ (H(b) ∩ Gβ) \ {0}.
The converse implication (i) ⇒ (ii) is proved similarly to the corresponding implication in Theorem 3.8.

Note that it suffices for us to show that H(b) ∩ G1/2 = {0}, since the spaces Gβ decrease when β increases.
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If (ii) is not satisfied, then Proposition 3.24 gives us a
(
P2(E1,cdA), L2(∆b dm)

)
-splitting sequence, and by

Lemma 3.17 and an argument analogous to the one given in the proof of Corollary 3.21, we deduce that
H(b0) ∩ G1/2 = {0}, where b0 is the outer factor of b. If g ∈ H(b) ∩ G1/2, then g0 = Tbg ∈ H(b0) ∩ G1/2

by Proposition 2.1 and by coanalytic Toeplitz invariance of the Gevrey classes mentioned in Remark 2.5.
So g0 ≡ 0, and hence g ∈ ker Tb. By Corollary 3.21 and the assumption that b does not vanish in D, we
conclude that no non-zero function in the class G1/2 lies in Kθb = ker Tb, θb being the (singular) inner factor
of b. Thus g ≡ 0, and the proof is complete. □

4. Comments and open problems

We end the article by explicitly stating a few open problems, solutions of which would further improve
our understanding of the containment problem.

4.1. Construction of a function in Kθ ∩A for general θ. In Example 3.1 we gave an explicit example
of a non-zero function in Kθ ∩A for the singular inner function θ corresponding to a point mass. Later, we
followed the idea of Dyakonov and Khavinson to construct in a similar way a non-zero function in Kθ ∩A∞

for any singular inner functions θ corresponding to a singular measure which assigns positive mass to some
Carleson set of zero Lebesgue measure. In our approach, we exploited that zmθ ∈ C∞(T) for analytic
m with appropriate zero set, and that the projection operator P+ preserves smoothness. For a general θ,
following naively the above idea leads to zmθ ∈ C(T) for any non-zero analytic m which vanishes at the
discontinuities of θ on T. However, it is known that P+ does not typically preserve continuity, so we cannot
conclude that P+zmθ ∈ Kθ ∩ A.

Problem 4.1. Given a singular inner function θ, construct explicitly a non-zero function in Kθ ∩ A.

The author is not aware of any such constructions which work in the general case, even though the
problem has been previously highlighted in several works (see, for instance, the discussion in [10]).

4.2. Constructive proof of Khrushchev’s theorem. Khrushchev’s Theorem 3.5 and Theorem 3.6 deal
with the question of existence of a function k ∈ L2(T) supported on a given set E for which the projection
P+k lies in the class A or A∞. Both proofs initially given by Khrushchev are non-constructive. In the latter
case, the necessary and sufficient condition for existence of non-zero such k is that E contains a Carleson set
of positive Lebesgue measure, and under this condition, an explicit construction of such k has been given
in [29]. The construction is, again, based on the smoothness preservation property of P+.

A constructive proof of Theorem 3.5 is not known to the author.

Problem 4.2. Given a set E ⊂ T of positive Lebesgue measure, construct explictly a non-zero function k
which vanishes outside of E, and satisfies P+k ∈ A \ {0}.

Through Proposition 2.2, a solution of the above problem would provide us with an explicit construction
of a non-zero function in H(b) ∩ A. Note that k in Problem 4.2 must necessarily be a function of rather
complicated structure. For instance, in the case that E contains no intervals, the requirement for k to live
only on E implies that k must be highly discontinuous.

4.3. The remaining Gevrey classes. With the exception of the Gevrey classes Gβ corresponding to the
parameter range β ∈ (0, 1/2), all other regularity classes introduced in Section 1 have appeared in our
discussion. We have seen that Kθ ∩ G1/2 = {0} whenever θ is singular inner, and this result is sharp in
the sense that for every β ∈ (0, 1/2), the intersection Kθ ∩ Gβ is non-trivial for the singular inner function
θ appearing in Example 3.1. One way to see this is to apply Lemma 3.9 and Remark 3.10 to the space

X∗ = P2(Eβ̃,cdA) for β̃ ∈ (0, 1) which we defined in Section 2.3, and argue that θ is not cyclic in this

space. This latter fact is not immediate, but can be proved for instance by the use of techniques of Limani
introduced in the artice [27], which deals with certain extensions of the Korenblum-Roberts cyclicity theory.

Fixing β ∈ (0, 1/2) we have that β̃ = β
1−β ∈ (0, 1). Just like the regularity class A∞ corresponds to the

Carleson condition in (3.4) through Theorem 3.3 and Theorem 3.8, the class Gβ appears to be related to a
generalized Carleson-type condition

(4.1)
∑
ℓ

|ℓ|1−β̃ < ∞,
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where, as before, {ℓ} is the system of maximal open arcs complementary to a closed set E ⊂ T. If E

satisfies (4.1) with 1 − β̃ = α, then E is sometimes called a α-Carleson set. Results of Khrushchev from
[22], the splitting sequence constructions from [7], and an argument similar to the one used in the proof
of Theorem 3.8, shows that in the special case that b is outer, the intersection H(b) ∩ Gβ , β ∈ (0, 1/2),

is non-trivial if and only if there exists a (1 − β̃)-Carleson set of positive Lebesgue measure on which
log∆b is integrable. To complete a version of Theorem 3.8 corresponding to the class Gβ , we would need a
corresponding singular inner function cyclicity theorem.

Problem 4.3. Find out if an extension of Korenblum’s cyclicity theorem to the context of (1− β̃)-Carleson
sets is valid. Namely, decide if a singular inner function θ = Sν is cyclic in P2(Eβ̃,cdA) if and only if

ν(E) = 0 for every (1− β̃)-Carleson set of zero Lebesgue measure.

Was the above statement verified, then through (2.7), (2.9) and Lemma 3.9 we would deduce a version of
the Dyakonov-Khavinson Theorem 3.3 for the Gevrey classes. Together with the above remark, we would
deduce a Gβ-version of Theorem 3.8.
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