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Abstract. To every non-extreme point b of the unit ball of H∞ of the unit disk there
corresponds a Pythagorean mate, a bounded outer function a satisfying the equation |a|2 +
|b|2 = 1 on the boundary of the disk. We study universal, i.e., simultaneous multipliers
for families of de Branges-Rovnyak spaces H(b), and develop a general framework for this
purpose. Our main results include a new proof of the Davis-McCarthy universal multiplier
theorem for the class of all non-extreme spaces H(b), a characterization of the Lipschitz
classes as the universal multipliers for spaces H(b) for which the quotient b/a is contained in
a Hardy space, and a similar characterization of the Gevrey classes as the universal multipliers
for spaces H(b) for which b/a is contained in a Privalov class.

1. Introduction

1.1. De Branges-Rovnyak spaces. The spaces H(b) were introduced by de Branges and
Rovnyak in [4] and named after them. They form a family of Hilbert spaces of analytic
functions on the unit disk D := {z ∈ C : |z| < 1} contained in the Hardy space H2 of square-
summable coefficient power series in D. The family is parametrized by symbols b in the unit
ball of H∞, the algebra of bounded analytic functions in D, and a given symbol b defines
uniquely the Hilbert space H(b) of functions with reproducing kernel of the form

kb(z, λ) =
1− b(λ)b(z)

1− λz
, z, λ ∈ D.

In general, it is not particularly easy to understand what functions are members of H(b).
Various ways of constructing the space appear in the original work of de Branges and Rovnyak
in [4], Sarason’s short treatise in [24], and the more recent two-volume set [8], [9] by Fricain
and Mashreghi. A variety of applications of spaces H(b) to operator theory and complex
analysis are also treated in those works.

In this article, we study the multiplier algebras of spaces H(b):

Mult(H(b)) = {m ∈ H∞ : mf ∈ H(b) whenever f ∈ H(b)}
The algebra Mult(H(b)) may very well be trivial. In the case that the symbol b is an inner
function, then Crofoot observed in [2] that the only multipliers of H(b) are the constant
functions. As usual, a function is inner if it is bounded in D and has boundary values on
T = ∂D = {z ∈ C : |z| = 1} of unit modulus almost everywhere. From works of Lotto and
Sarason in [12] and [13] we know that plenty of non-constant multipliers exist whenever b
is not inner. However, an explicit characterization of Mult(H(b)) exists only in a few very
special cases. See our discussion in Section 1.4 below for some examples of results of this
type.
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We will concern ourselves only with the non-extreme case, namely, we are assuming that
the symbol b satisfies the condition∫

T
log(1− |b(ζ)|2)|dζ| > −∞.

Here |dζ| denotes the arclength measure on T. The above integral convergence is well known
to be equivalent to b being a non-extreme point of the unit ball of H∞. It is customary to
introduce the outer function a : D → D satisfying the equation

|a(ζ)|2 + |b(ζ)|2 = 1

for almost every ζ ∈ T, and a(0) > 0. Then a is uniquely determined by b, and we say that b
and a form a Pythagorean pair. These pairs will play a lead role in our discussion.

One can define a non-extreme space in a particularly useful way as a set of solutions to the
mate equation,

(1.1) Tbf = Taf+.

Here Tb and Ta are Toeplitz operators on H2, that is, operators of multiplication by b and a

respectively, followed by an orthogonal projection from L2(T) to H2. The space H(b) can be
defined as the set of those f ∈ H2 for which a solution f+ ∈ H2 exists to the mate equation.
It can be shown that at most one solution f+ exists in H2, so that the mate f+ is well-defined,

if it exists. The norm on H(b) is then ∥f∥H(b) =
√
∥f∥22 + ∥f+∥22, where ∥ · ∥2 is the usual

L2(T) norm. We note also that the non-extreme case is characterized by the containment
of the set of analytic polynomials in Mult(H(b)), and their density in H(b). Both of these
results are due to Sarason.

1.2. Universal multipliers and the Davis-McCarthy theorem. One special feature of
the spaces H(b) is that they are not rotationally invariant. Namely, if f(z) ∈ H(b), then it is
not in general the case that f(eiθz) ∈ H(b). This feature is shared by the multiplier algebra
Mult(H(b)), and membership of a function f in H(b) or in Mult(H(b)) often depends on
local behaviour of f near distinguished points on T (for instance, this is the case in examples
studied in [7]).

Consider, however, a family F of symbols b which is rotationally invariant: b(eiθz) ∈ F
for every b(z) ∈ F and θ ∈ R. Then certainly it is to be expected that ∩b∈FMult(H(b))
is a space which is at least rotationally invariant, and one may therefore hope for an easier
characterization of this intersection. Any function m inside the intersection of the multiplier
algebras corresponding to F may justly be called a universal multiplier for F . Our families
of symbols b will be defined by membership of the Pythagorean quotient b/a in a sufficiently
nice space of analytic functions X:

F(X) := {b : b/a ∈ X}.
For instance, if N+ is the Smirnov class of quotients of bounded analytic functions in D with
outer denominator, then F(N+) is readily seen to equal the family of all non-extreme symbols
b. The universal multipliers in this case have been characterized by Davis and McCarthy in
their deep work [3]. For α ∈ (0, 1/2], let Gα be the Gevrey class

(1.2) Gα :=
{
f(z) =

∑
n≥0

f̂(n)zn : |f̂(n)| = O
(
exp(−cnα)

)
for some c > 0

}
.
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Using McCarthy’s earlier work on topologies of N+ in [15], they proved the following result.

Theorem (Davis-McCarthy). We have

G1/2 =
⋂

b∈F(N+)

Mult(H(b)).

Motivated by the above theorem, we will consider in this article smaller rotationally in-
variant families F(X), and characterize their corresponding universal multipliers.

1.3. Main result. Our first main result pertains to symbol families with Pythagorean quo-
tients in Hp. The Hardy space Hp consists of those analytic functions in D which satisfy the
integral mean boundedness condition

(1.3) ∥f∥pp := sup
r∈(0,1)

∫
T
|f(rζ)|p|dζ| < ∞.

We will use the full range p ∈ (0,∞). For α ∈ (0, 1), the analytic Lipschitz class Λa
α is defined

as the set of those functions m analytic in D and continuous in D := D ∪ T which satisfy the
Lipschitz-type modulus of continuity estimate

|m(z)−m(w)| ≤ Cm|z − w|α, z, w ∈ D

for some constant Cm > 0. For α = 1, in order to present a unified statement of our
theorem, we follow a usual convention: we define Λa

1 as the analytic Zygmund class consisting
of functions m analytic in D, continuous in D, and satisfying

|m(ei(t+s)) +m(ei(t−s))− 2m(eit)| ≤ Cm|s|, s, t ∈ R.

For α > 1, we define Λa
α as the space of functions for which the appropriate derivative

lies in one of the above introduced classes. Namely, if n is the positive integer satisfying
n < α ≤ n + 1, then Λa

α is to consist of those functions for which the derivative f (n) lies in
Λa
α−n. With these definitions in place, we can state our first main theorem.

Theorem A. For p ∈ (0,∞) we have

Λa
1/p =

⋂
b∈F(Hp)

Mult(H(b)).

One immediate corollary is that

A∞ =
⋂

p∈(0,∞)

⋂
b∈F(Hp)

Mult(H(b)),

where A∞ =
⋂

α>0 Λ
a
α is the algebra of analytic functions in D with smooth extensions to T.

Our second result pertains to the Privalov classes N q. Recall that functions in N+ satisfy∫
T log(1+ |f |)|dζ| < ∞. For q > 1, the class N q consists of those functions f ∈ N+ for which
we have ∫

T

(
log(1 + |f |)

)q|dζ| < ∞.

The classes N q have been studied by Privalov in [20].

Recall the definition of the Gevrey classes Ga in (1.2). Our second main result is the
following.
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Theorem B. For q ∈ (1,∞) we have

G1/(1+q) =
⋂

b∈F(N q)

Mult(H(b)).

In the proof of our theorems we will use mainly the methods of functional analysis, and
our approach focused around the mate equation in (1.1) is much different from the one
used by Davis and McCarthy in [3]. The main results, Theorem A and Theorem B, will
be deduced as consequences of a more general statement in Proposition 5.1 below. Given a
space X satisfying certain properties, we will establish in that proposition a bijection between
universal multipliers for F(X) and symbols of certain Hankel operators. In particular, our
general result applies to X = N+, and so we will obtain a new proof of the Davis-McCarthy
theorem, one which is independent from McCarthy’s work on topologies of the Smirnov class
from [15]. Our starting point will be the research of Lotto and Sarason from [13] which deals
with operator-theoretic characterization of multipliers of H(b) in terms of boundedness of
compositions of Hankel operators. An exposition of their results is contained in Section 2
below.

1.4. Other multiplier results and comments.

1.4.1. More on the Davis-McCarthy theorem and its variants. The original proof of Davis-
McCarthy universal multiplier theorem in [3] is based on earlier results of McCarthy from
[15] on the dual of N+. There is a natural metric on N+ (see Section 3.2 below), and the
dual with respect to the induced metric topology has been found by Yanagihara in [26] to
equal the Gevrey class G1/2 in (1.2). The dual of N+ with respect to a different topology, the
so-called Helson topology, is easily seen to equal the intersection of ranges of all co-analytic
Toeplitz operators on H2 (see [15] for details). McCarthy showed that the two mentioned
topologies have the same duals, and concluded that G1/2 equals the intersection of ranges of
all co-analytic Toeplitz operators. The relevance of this result to spaces H(b) is that any
multiplier for H(b) must necessarily be of the form m = Tau for some u ∈ H2 (see [13], for
instance), from which it easily follows that a universal multiplier must be contained in the
mentioned intersection. That is, it necessarily must be a member of G1/2, by McCarthy’s
theorem.

Other authors proved variants of the Davis-McCarthy theorem by following their strategy
outlined in the above paragraph. In [18], Meštrović and Pavićević used earlier duality results
of Stoll from [25] to find the universal multipliers corresponding to the family of spaces H(b)
for which the logarithm of the density of the Aleksandrov-Clark measure of b is in Lq(T),
q > 1. The condition to be a universal multiplier for this family is the same as in Theorem B,
but the two results are different because the families of H(b)-symbols are different.

Similarly, our proof of Theorem A is based on Lemma 3.2 below, which is a result of Duren,
Romberg and Shields, but in fact going back to Hardy and Littlewood, and which identifies
the dual space of Hq, for q ∈ (0, 1), as a Lipschitz class. Note, however, that in spite of
this similarity, the proof technique used in the present article is completely different from
the one used in [3] and the related works. One advantage of our approach is that it allows
us to compute the universal multipliers for families of symbols b defined in terms of their
modulus alone, instead of the less tractable logarithmic integrability of their Aleksandrov-
Clark densities.
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1.4.2. Explicit characterization of multipliers for rational b. Dealing with a single symbol b is
a different and more delicate question, but an explicit characterization of Mult(H(b)) exists
in the case that b is a rational function. In the case that a rational b is not inner, then
it is well known that H(b) = M(a), where the latter space is the range of the coanalytic
Toeplitz operator Ta. By a result of Fricain, Hartmann and Ross from [6] we conclude that
Mult(H(b)) = H(b) ∩ H∞ if b is rational and not inner. They establish also a very concrete
description of the members of H(b) for these rational b. Naturally, for a general symbol b,
such a simple characterization of Mult(H(b)) is not available.

1.4.3. All bounded functions as multipliers. The case H∞ = Mult(H(b)) has been settled by
Sarason in [23, Theorem 3], who gives several conditions equivalent to this equality. One of
the equivalent conditons is that H(b) = aH2 = {af : f ∈ H2}. Another is that a and b should
form a Corona pair, in the sense that

inf
z∈D

(|a(z)|+ |b(z)|) > 0

and |a|2 should be a so-called A2-weight: namely, it should satisfy the estimate(∫
I
|a|2|dζ|

)(∫
I
|a|−2|dζ|

)
≤ C|I|2,

where I is any arc of T and C > 0 is a constant. Davis and McCarthy in [3] found a similar
characterization in terms of the density w := (1 − |b|2)|1 − b|−1 of the Aleksandrov-Clark
measure of b. By their result, Mult(H(b)) = H∞ if and only if w is an A2-weight.

1.5. Outline of the paper and the methods. We begin, in Section 2, by presenting the
results of Lotto and Sarason from [13]. Then, in Section 3, we characterize the continuity
of Hankel operators between relevant pairs of function spaces. We continue in Section 4, by
proving a stability result for Pythagorean factorizations of functions in N+. We make use
of these results in Section 5, where we prove our general universal multiplier criterion and
deduce from it Theorem A and Theorem B, as well as the Davis-McCarthy theorem. Then
we conclude in Section 6 with some suggestions for continuing research along this direction.

2. Research of Lotto and Sarason

The purpose of this section is to present the research of Lotto and Sarason from [13].
The important consequences of the results from that work are stated in Corollary 2.2 and
Corollary 2.4 below.

2.1. Hankel operators. Let P+ and P− be the standard projection operators

(2.1) P+f(z) =

∫
T

f(ζ)

1− ζz
|dζ|, z ∈ D, f ∈ L1(T),

(2.2) P−f(z) =

∫
T

f(ζ)ζz

1− ζz
|dζ|, z ∈ D, f ∈ L1(T).

The function P+f(z) is analytic in D. On the other hand, P−f(z) is conjugate analytic in
D, and it vanishes at z = 0. Through the usual identification of the Hardy space H2 with
a closed subspace of L2(T), as well as similar identification of the orthogonal complement

L2(T)⊖H2 = zH2 = {zf : f ∈ H2}, the operators P+ and P− are the orthogonal projections
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from L2(T) onto H2 and zH2, respectively. The actions of P+ and P− on a Fourier series

f(ζ) =
∑

n∈Z f̂(n)ζ
n ∈ L2(T) are given by

P+f(ζ) =
∑
n≥0

f̂(n)ζn

and
P−f(ζ) =

∑
n<0

f̂(n)ζn.

We highlight the easily established identity

(2.3) P−f = P+f − f̂(0).

Given a symbol m ∈ L2(T), we will consider the Hankel operator

(2.4) Hmf := P−mf, f ∈ H∞.

Clearly Hmf(z) is a conjugate analytic function in D which vanishes at z = 0. In particular,

we have Hmf ∈ zH2, and the conjugate Hmf is a member of the space H2.

The content of Nehari’s theorem from [19] is that if m ∈ H2 equals the projection m = P+u

for some u ∈ L∞(T), then the operator Hm acts boundedly from H2 into zH2, and that this
condition on m is necessary for boundedness. The space of such symbols, namely

BMOA =
{
m ∈ H2 : m = P+u for some u ∈ L∞(T)

}
is the space of analytic functions of bounded mean oscillation. It is well known that H1 and
BMOA are dual to each other, in the sense that every bounded linear functional ℓ on H1

can be identified with a unique element m ∈ BMOA for which we have

(2.5) ℓ(f) = lim
r→1−

∫
T
f(rζ)m(rζ)|dζ|

The operator norm of the functional ℓ is comparable to ∥m∥BMOA := inf ∥u∥∞, this infimum
extending over all bounded functions u satisfying m = P+u. We say that BMOA is the
Cauchy dual of H1.

2.2. Lotto-Sarason characterization. In [13], Lotto and Sarason characterized the mem-
bership m ∈ Mult(H(b)) in terms of boundedness of compositions of Hankel operators and
their adjoints. The formal adjoint of the operator Hm is given by

H∗
mg = P+mg

where g ∈ zH2 ∩ H∞, say. Then Hm extends to a bounded operator H2 → zH2 if and only
if H∗

m extends to a bounded operator zH2 → H2, and if this is the case, these operators are
each others Hilbert space adjoints. The following result (see [13, Theorem 2] for a proof)
characterizes multipliers for H(b):

Theorem 2.1. Let b be a non-extreme point of the unit ball of H∞, and let a be the
Pythagorean mate of b. A function m ∈ H∞ is a member of Mult(H(b)) if and only if
the following three conditions hold.

(i) There exists u ∈ H2 such that m = Tau.
(ii) The operator H∗

uHa is bounded on H2.
(iii) The operator H∗

uHb is bounded on H2.
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Note that the conditions (ii) and (iii) may be satisfied even without the operator H∗
u be-

ing bounded by itself. The question of when a composition of Hankel operators as above is
bounded is rather delicate. Theorem 2.1 gives us, however, a sufficient condition for mem-
bership of m ∈ Mult(H(b)). Namely, if the solution u to the equation m = Tau happens
to satisfy u ∈ BMOA, then the operator Hu is bounded by Nehari’s theorem, and hence
conditions (ii) and (iii) in Theorem 2.1 are satisfied by virtue of a, b ∈ H∞ ⊂ BMOA. This
simple consequence of Theorem 2.1 will play an important role in our development.

Corollary 2.2. If m ∈ H∞ is of the form

m = Tau

for u ∈ BMOA, then m ∈ Mult(H(b)).

Lotto and Sarason in [13] used Corollary 2.2 to give new proofs of certain known statements
regarding multipliers on H(b). They proved also a remarkable theorem characterizing when a
multiplier m ∈ Mult(H(b)) is simultaneously a multiplier for the family of spaces {H(Ib)}I ,
where I is any inner function.

Theorem 2.3. Let m = Tau ∈ Mult(H(b)). The following two statements are equivalent.

(i) We have

m ∈
⋂
I

Mult(H(Ib)),

where the intersection is taken over all inner functions I.
(ii) The Hankel operator Hub : H2 → zH2 is bounded.

The easily verified identity Hub = HP−ub and Nehari’s theorem imply that the second

condition in Theorem 2.3 is equivalent to P−ub being a member of BMOA. In fact, one
can express the condition (ii) intrinsically in terms of the space H(b). Indeed, condition (ii)
is equivalent to the mate m+ of m (recall the mate equation in (1.1)) being contained in
BMOA, as follows from the proof of the following corollary.

Corollary 2.4. Let F be a family of symbols invariant under multiplication by inner func-
tions: b ∈ F implies that Ib ∈ F for every inner function I. If m is a universal multiplier
for F , then for any b ∈ F , the mate m+ of m in H(b) is a member of BMOA.

Proof. Since m is contained in the intersection of the algebras Mult(H(b)) for b ∈ F , in
particular it is contained in the intersection of the algebras Mult(H(Ib)), where I is an

arbitrary inner function. By Theorem 2.3, the operator Hub : H2 → zH2 is bounded, where
u ∈ H2 satisfies m = Tau. By Nehari’s theorem, P−(ub) ∈ BMOA, the space of complex
conjugates of functions in BMOA. Relation (2.3) implies that P+(bu) = Tbu ∈ BMOA.
Now, note that by the commutation relation stated in (5.2) below we have

TaTbu = TbTau = Tbm.

This identity and (1.1) tells us that Tbu is the mate of m in H(b). That is, m+ = Tbu ∈
BMOA. □
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3. Hankel operators and their continuity

Proofs of our main results will rely on characterization of the continuity of Hankel operators
Hm acting between a space X and BMOA. This section presents elementary material on
Hankel operators between spaces of analytic functions, and conditions for their continuity.
The main results are Proposition 3.1 and Proposition 3.4.

3.1. Hankel operators with Lipschitz symbols. We deal first with the case X = Hp for
p ∈ (0,∞). Note that the definition of the Hankel operator in (2.4) involving the projection
operator P− in (2.2) presupposes the integrability of mf on T. Therefore, in the case that
p < 1, we may initially only define Hm on a dense subset of Hp. In any case, let us say that
Hm is continuous as an operator from Hp into BMOA if there exists a constant C > 0 such
that for every function h ∈ H∞ we have the estimate

(3.1) ∥Hmh∥BMOA ≤ C∥h∥p,
where we use the natural definition ∥g∥BMOA := ∥g∥BMOA and where ∥ · ∥p was defined in
(1.3). If (3.1) holds, then Hm extends by continuity from the (dense) subset H∞ to Hp, and
the extension is a continuous linear operator from Hp into BMOA.

Proposition 3.1. Let p ∈ (0,∞) and m ∈ H∞. The Hankel operator Hm is continuous from
Hp into BMOA if and only if m ∈ Λa

1/p.

The proof is essentially the same as the classical proof of boundedness of the Hankel
operator Hm : H2 → zH2 being equivalent to m ∈ BMOA. The pivotal point in the classical
proof is the ability to factor a function in the predual to BMOA, which is H1, into a product
of two functions in H2. We follow this idea in our proof of Proposition 3.1.

In order to apply the reasoning in the last paragraph, we need to identify the Cauchy
predual space of the analytic Lipschitz classes. This is done in the following result.

Lemma 3.2 (Duren-Romberg-Shields, Hardy-Littlewood). Let q ∈ (0, 1) and m ∈ H∞. The
following statements are equivalent.

(i) The limit

ℓm(f) := lim
r→1−

∫
T
f(rζ)m(rζ)|dζ|

exists for every f ∈ Hq and satisfies the bound

|ℓm(f)| ≤ Cm∥f∥q
for some constant Cm > 0.

(ii) We have m ∈ Λa
1/q−1.

In other words, the Cauchy dual of Hq is Λa
1/q−1. Duren, Romberg and Shields give a

proof in [5]. The critical estimate in their proof is an inequality for integral means of analytic
functions due to Hardy and Littlewood from [11, page 412].

We need also an elementary factorization result.

Lemma 3.3. Let the positive real numbers p, q, s be related by

1

q
=

1

s
+

1

p
.
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(i) Every function f ∈ Hq can be factored as f = g · h, with g ∈ Hs and h ∈ Hp in such a
way that

∥f∥q = ∥g∥s · ∥h∥p.
(ii) Conversely, given g ∈ Hs and h ∈ Hp, the product f = gh satisfies

∥f∥q ≤ ∥g∥s · ∥h∥p

Part (i) follows readily from the inner-outer factorization of Hardy space functions, while
part (ii) follows from an application of Hölder’s inequality.

Proof of Proposition 3.1. Fix p ∈ (0,∞) and let m ∈ Λa
1/p. To show that Hm is continuous

from Hp into BMOA it will suffice to show by the H1 − BMOA duality that we have an
estimate of the form ∣∣∣ ∫

T
gHmh|dζ|

∣∣∣ ≤ Cm∥g∥1∥h∥p

for every pair of functions g and h in H∞. Note that the left-hand side in the inequality above
vanishes if g is a constant function, and so we may assume that g(0) = 0. Set f = gh. The
expression inside the absolute value on the right-hand side above equals the inner product〈
P−mh, g

〉
in L2(T), and since g ∈ zH2 = L2(T)⊖H2, it equals∫

T
gHmh|dζ| =

〈
mh, g

〉
=

∫
T
mgh|dζ|

=

∫
T
mf |dζ|.

If q satisfies 1
q = 1 + 1

p , then Λa
1/p = Λa

1/q−1, and by Lemma 3.2 and part (ii) of Lemma 3.3,

last expression is bounded in modulus by

Cm∥f∥q ≤ Cm∥g∥1∥h∥p.

Thus Hm is continuous from Hp into BMOA.

If conversely Hm is continuous from Hp into BMOA, then to show that m ∈ Λa
1/p it will

suffice by Lemma 3.2 to show that ∣∣∣ ∫
T
fm|dζ|

∣∣∣ ≤ C∥f∥q

for some constant C > 0, where q is as in the proof of the previous implication. If f is a
constant function, then the inequality is obvious, and so we may assume that f(0) = 0. Factor
f = gh according to part (i) of Lemma 3.3, so that g(0) = 0, and ∥f∥q = ∥g∥1 · ∥h∥p. Then

g ∈ zH2, and so ∫
T
fm|dζ| =

〈
gh,m

〉
=
〈
g,Hmh

〉
=

∫
T
gHmh|dζ|
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Using the H1 −BMOA duality and the assumption of continuity of Hm, the last expression
is bounded in modulus by

C∥g∥1 · ∥Hmh∥BMOA ≤ C ′∥g∥1 · ∥h∥p = C ′∥f∥q.

The proof is complete. □

3.2. Hankel operators with Gevrey symbols. The purpose now is to derive results sim-
ilar to the ones above, but which apply to Hankel operators with Gevrey symbols defined in
(1.2). The domain of the Hankel operator Hm will be the Privalov class N q for q > 1, or the
Smirnov class N+. Topologies on these spaces will be induced by the translation-invariant
metrics

(3.2) ∥f − g∥N q :=

∫
T

(
log(1 + |f − g|)

)q|dζ|, f, g ∈ N q,

and

(3.3) ∥f − g∥N+ :=

∫
T
log(1 + |f − g|)|dζ|, f, g ∈ N+.

With these definitions, N q and N+ become so-called F -spaces (see [22, Section 1.8]). A
topological vector space X is said to be an F -space if scalar multiplication and addition are
continuous in X, and the topology of X is induced by a complete and translation-invariant
metric. Whenever we mention the space N q or N+, it is understood that they are equipped
with the respective metric topologies.

We say that the Hankel operator Hm is continuous from N q (or N+) into BMOA if Hm

defined in (2.4) has a continuous extension to an operator from N q (or N+) into BMOA.

Proposition 3.4.

(i) For q > 1, the Hankel operator Hm : N q → BMOA is continuous if and only if
m ∈ G1/(1+q).

(ii) The Hankel operator Hm : N+ → BMOA is continuous if and only if m ∈ G1/2.

In fact, characterization of the continuity of Hankel operators in this case is rather insen-
sitive to change of the range space. In (i), we may replace BMOA by N q itself, or any of
the spaces Hp, even for p = ∞, without changing the conclusion. So, for instance, mem-
bership of m in the corresponding Gevrey class is equivalent to continuity of the operator
Hm : N q → Hp. Similar statement holds for the operators Hm on N+ also. These facts can
be deduced from the proofs below, but they will not be used in the sequel.

To prove Proposition 3.4, we will need counterparts of Lemma 3.2.

Lemma 3.5. Let m ∈ H∞ and set

ℓm(f) :=

∫
T
f(ζ)m(ζ)|dζ| = 2π

∞∑
k=0

f̂(k)m̂(k), f ∈ H∞.

(i) For p > 1, the mapping ℓm extends to a continuous linear functional on N q if and only
if m ∈ G1/(1+q).

(ii) The mapping ℓm extends to a continuous linear functional on N+ if and only if m ∈ G1/2.
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Part (ii) is a well known result of Yanagihara from [26], while part (i) is due to Meštrović
and Pavićević in [17], who gave a proof using earlier results of Stoll from [25]. Moreover, in
[25] and [26] the following elementary Taylor coefficient estimates are contained.

Lemma 3.6.

(i) For any q > 1 and f ∈ N q, we have the estimate

|f̂(n)| = exp
(
o(n1/(1+q))

)
, n ≥ 0.

(ii) For f ∈ N+, we have the estimate

|f̂(n)| = exp
(
o(n1/2)

)
, n ≥ 0.

Proof of Proposition 3.4. Parts (i) and (ii) have the same proof. For the moment, let us
assume that f ∈ H∞ and note that (2.4) implies the Fourier series representation

(3.4) Ĥmf(n) = 2π
∞∑
k=0

f̂(k)m̂(k − n) =

∫
T
f(ζ)ζ |n|m(ζ)|dζ|, n ≤ −1

and Ĥmf(n) = 0 for n ≥ 0. If Hm is a continuous operator from N q (or N+) to a space
on which the mappings g 7→ ĝ(n) are continuous (in particular, this applies to BMOA),

then f 7→ Ĥmf(−1) is a continuous linear functional on N q (or N+), and from (3.4) and
Lemma 3.5 we deduce readily that m lies in the corresponding Gevrey class.

We will prove the converse statement for case (ii) , the proof for the case (i) being analogous.

Since we are assuming that m ∈ G1/2, the series
∑∞

k=0 f̂(k)m̂(k − n) converges absolutely for

every f ∈ N+ and n ≤ −1. In fact, we have

(3.5)

∞∑
k=0

∣∣f̂(k)m̂(k − n)
∣∣ ≤ A exp

(
− d|n|1/2

)
for some constants A > 0 and d > 0 depending only on f and m. Accepting for a moment
the claim, note that the linear operator

f 7→ 2π
∑
n≤−1

( ∞∑
k=0

f̂(k)m̂(k − n)
)
zn

maps N+ into G1/2 ⊂ BMOA, coincides for f ∈ H∞ with our earlier definition of Hm by

(3.4), and it is easily seen to be closed (since the linear functionals f 7→
∑∞

k=0 f̂(k)m̂(k − n)
are continuous on N+ for each n, by virtue of m ∈ G1/2 and Lemma 3.5). Since N+ and

BMOA are F -spaces, the usual formulation of the closed graph theorem applies (see [22,
Section 2.15]), and we conclude that Hm : N+ → BMOA is continuous.

It remains to verify the claim (3.5). Since m ∈ G1/2, we have that |m̂(k)| ≤ B exp(−3dk1/2)
for some B > 0, d > 0 and every integer k ≥ 0. By part (ii) of Lemma 3.6, there exists a

positive integer K such that |f̂(k)| ≤ exp(dk1/2) for k ≥ K. Then, for integers n ≤ −1, we
have ∣∣f̂(k)m̂(k − n)

∣∣ ≤ B exp(−2d(k + |n|)1/2)

≤ B exp(−d|n|1/2) exp(−dk1/2)
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for k ≥ K. If D = max{|f̂(k)| : 0 ≤ k < K}, we may now estimate

∞∑
k=0

∣∣f̂(k)m̂(k − n)
∣∣ ≤ DK exp(−d|n|1/2) +B exp(−d|n|1/2)

∞∑
k=K

exp(−dk1/2)

≤ A exp(−d|n|1/2).

We have verified (3.5), and so the proof is complete (in the proof of case (i), the above
estimates are all valid with the exponent 1/2 replaced by 1/(1 + q)). □

4. Pythagorean factorizations

To each symbol b we have associated the quotient h = b/a ∈ N+. This process can be
reversed, and so every h ∈ N+ can be uniquely expressed as a quotient of Pythagorean mates.
In this section, we prove a stability result for this factorization.

4.1. Pythagorean factorization and their stability. Let h ∈ N+ and let I be the inner
factor of h. Set a to be the unique outer function satisfying a(0) > 0 and

(4.1) |a|2 = 1

|h|2 + 1

almost everywhere on T. Then there exists a unimodular scalar c and a unique outer function
bo which satisfies bo(0) > 0,

|bo|2 =
|h|2

|h|2 + 1

and

h(z) =
cI(z)bo(z)

a(z)
=

b(z)

a(z)
, z ∈ D.

We say that h = b/a is the Pythagorean factorization of h. Clearly b and a are Pythagorean
mates, in the sense that the equality |b|2 + |a|2 = 1 holds almost everywhere on T.

We will need a convergence result for mates in the factorizations.

Proposition 4.1. Assume that the sequence of functions {hn}n converges to the function h
in the metric topology on N+. If hn = bn/an and h = b/a are the corresponding Pythagorean
factorizations, then there exists a subsequence {nk}k such that

lim
k→∞

ank
(ζ) = a(ζ)

and

lim
k→∞

bnk
(ζ) = b(ζ)

for almost every ζ ∈ T.

We prove Proposition 4.1 after a brief review of basic properties of outer functions.
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4.2. Pointwise convergence of outer functions on the boundary. Recall that if a
is an outer function satisfying a(0) > 0, and we set g(ζ) = log |a(ζ)|, then we have the
representation formula

log a(z) =
1

2π

∫
T

ζ + z

ζ − z
g(ζ)|dζ| = ĝ(0) + 2

∑
n≥1

ĝ(n)zn = 2P+g(z)− ĝ(0), z ∈ D.

For any p ∈ (0, 1) the operator P+ is continuous from L1(T) into Hp (see, for instance, [1,
Theorem 2.1.10]). Thus if gn(ζ) = log |an(ζ)| and gn → g in L1(T), then after passing to a
subsequence we can ensure the pointwise convergence

lim
n

log an(ζ) = log a(ζ)

for almost every ζ ∈ T. After exponentiating this translates into

lim
n

an(ζ) = a(ζ)

for almost every ζ ∈ T. The proof of Proposition 4.1 is thus reduced to showing that the
convergence hn = bn/an → h = b/a in N+ implies that log |ank

| → log |a| in L1(T) along
some subsequence {nk}k. For if this is the case, then since hn → h in N+ implies by (3.3)
that

(4.2) lim
n→∞

∫
T
log(1 + |hn − h|)|dζ| = 0,

basic measure theory ensures that the subsequence can be refined to ensure almost every-
where pointwise convergence hnk

(ζ) → h(ζ). By the above reasoning we can ensure also the
convergence ank

(ζ) → a(ζ) almost everywhere, and then it follows that bnk
(ζ) → b(ζ) almost

everywhere.

4.3. Proof of the stability result. The sought-after result now follows in a standard way
from uniform integrability (see [21, page 133], for instance). Recall that a sequence {gn}n of
functions in L1(T) is said to be uniformly integrable if

lim
δ→0

sup
E:|E|≤δ

∫
E
|gn||dζ| = 0

holds uniformly in n. An elementary argument shows that if gn → g almost everywhere on
T, then uniform integrability of the sequence {gn}n is equivalent to convergence gn → g in
L1(T).

Proof of Proposition 4.1. According to the above discussion, it suffices for us to show that
log |an| → log |a| in L1(T). Since hn → h in N+, after passing to a subsequence, we may
suppose that hn(ζ) → h(ζ) almost everywhere on T. Recalling (4.1), this implies that

lim
n

|an(ζ)|2 = lim
n

1

|hn(ζ)|2 + 1
=

1

|h(ζ)|2 + 1
= |a(ζ)|2

almost everywhere on T. Taking logarithms, we obtain log |an(ζ)| → log |a(ζ)| almost every-
where on T.

Note that 1/|a|2 = |hn|2 + 1 on T and recall that
√
x+ 1 ≤

√
x + 1 for x ≥ 0. Use also

that the logarithm is increasing to see that on T we have
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∣∣ log |an|∣∣ = log
(√

|hn|2 + 1
)

≤ log
(
|hn|+ 1

)
≤ log

(
1 + |hn − h|

)
+ log

(
1 + |h|

)
.

Since (4.2) holds, the sequence {log(1 + |hn − h|)}n converges in L1(T) (to 0), and so is
uniformly integrable. But then the above inequalities show that {log |an|}n is uniformly
integrable on T, and since log |an| → log |a| almost everywhere on T, we have also log |an| →
log |a| in L1(T). By the initial remarks, the proof is complete. □

5. Proof of the main theorems

5.1. A general criterion. Theorem A and Theorem B will follow from our earlier develop-
ments as corollaries of a general statement which we shall now state, and prove next.

In this section, we let X be a topological space of analytic functions on D. The properties
of X which we shall need in our proof are as follows.

(i) X is an F -space.
(ii) X is continuously contained in the Smirnov class N+.
(iii) H∞ is dense in X.
(iv) The multiplication operator f 7→ φf is continuous on X for each φ ∈ H∞.
(v) If h ∈ X has Pythagorean factorization h = b/a, then 1/a ∈ X.

It is known that the spaces appearing in theorems stated in the Introduction, namely Hp,
N q and N+, all satisfy the above five conditions. See, for instance, [10], [20] and [25]. The
fifth property is easily seen by recalling that 1/|a|2 = |h|2 + 1 on T.

Our general result will apply to any space X satisfying the above five conditions. To such
X we associate two sets of functions. As before, we let F(X) consist of non-extreme symbols
b with Pythagorean mate a for which b/a is a member of X, and we let H(X,BMOA) consist
of those analytic functions m ∈ H∞ for which the densely defined Hankel operator Hm in
(2.4) extends to a continuous mapping from X into BMOA.

Proposition 5.1. Let X be a topological space of analytic functions on D satisfying properties
(i) − (v) stated above. Then the universal multipliers for F(X) coincide with the symbols of
continuous Hankel operators Hm : X → BMOA. That is, we have the equality⋂

b∈F(X)

Mult(H(b)) = H(X,BMOA).

Theorem A, Theorem B and the Davis-McCarthy Theorem follow immediately from Propo-
sition 5.1 and the characterization of continuous Hankel operators in Proposition 3.1 and
Proposition 3.4.

We proceed with the proof of Proposition 5.1.

5.2. Toeplitz operators. For notational convenience, we shall use the Toeplitz operators

(5.1) Tg : H2 → H2, f 7→ P+(gf).
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Here g ∈ L∞(T) is the symbol of the operator. The following commutation relation is readily
established and will be used frequently:

(5.2) Tg1g2 = Tg1Tg2 = Tg2Tg1 , g1, g2 ∈ H∞.

If g ∈ H∞, then the operator Tg is bounded from BMOA into itself. To see this, we may
simply observe that Tg is the Banach space adjoint of the operator of multiplication by g on
H1, with respect to the H1 − BMOA duality pairing in (2.5). Moreover, if g is an outer
function, then the operator Tg is injective on H2.

5.3. From Hankel continuity to universal multiplier. We will first prove that if m ∈
H(X,BMOA), then m is a universal multiplier for the family F(X). Let b ∈ F(X), so that
b/a ∈ X. By properties (iii) and (v) in Section 5.1, there exists a sequence {hn}n of functions
in H∞ such that hn → 1/a in the topology of X. By property (iv), we have ahn → 1 in X.
Now, Hm(a−1) ∈ BMOA, and this function vanishes at z = 0. Say,

Hm(a−1) = P−(ma−1) = zu,

where u ∈ BMOA. Using the identity (2.3) and continuity of Hm we obtain

(5.3) zu = lim
n

Hmhn = lim
n

P+(hnm) + cn = lim
n

Thm
m+ cn,

with convergence in the sense of the norm on BMOA and where cn are constants. Applying
the operator Tz (here z denotes the identity function on T) and using the relation (5.2), we
arrive at

u = lim
n

Tzhn
m.

Applying also the Toeplitz operator Ta, which, as mentioned above, is continuous on BMOA,
and using (2.3), we obtain

Tau = lim
n

Tzahn
m

= lim
n

P+(azhnm)

= lim
n

Hm(azhn) + lim
n

c′n

where c′n are constants. Since ahn → 1 in X, the continuity of the Hankel operator Hm

implies that

Hm(azhn) → Hmz =
m−m(0)

z
−m′(0)

in BMOA. We must then also have that limn c
′
n = c′ for some constant c′. Finally, we obtain

that

Tau =
m−m(0)

z
−m′(0) + c′.

Since u ∈ BMOA, we obtain by Corollary 2.2 that m−m(0)
z − m′(0) + c′ ∈ Mult(H(b)). It

follows that m ∈ Mult(H(b)).

We have therefore proved that the right-hand side is included in the left-hand side in the
asserted equality in the statement of Proposition 5.1.
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5.4. From universal multiplier to Hankel continuity. It takes considerably more effort
to prove that the universal multiplier property of m for the family F(X) implies that m ∈
H(X,BMOA). We start with a few observations.

If m is a universal multiplier for the family F(X), then for any h = b/a ∈ X in particular
we have m ∈ H(b), and so a unique mate m+(h) ∈ H2 exists which satisfies the operator
equation

(5.4) Tbm = Tam+(h).

The use of notation m+(h) in favor of the more natural m+(b) is a conscious choice, as

we will soon see that h 7→ m+(h) is a linear function. Let us note that our assumptions
force m+(h) to lie in BMOA. By property (iv) in Section 5.1, if b/a ∈ X and I is an inner
function, then Ib/a ∈ X. But then Ib ∈ F(X), since a is the Pythagorean mate of Ib. Hence
F(X) satisfies the hypothesis of Corollary 2.4. Thus the mapping

(5.5) m+ : X → BMOA, h = b/a 7→ m+(h)

is well-defined. Our task will be to show that m+ is linear and continuous. At the end of
our development, we will note that m+ is a rank one perturbation of the operator Hm : X →
BMOA.

We start by establishing linearity.

Lemma 5.2. For h1, h2 ∈ X and a scalar λ ∈ C, we have

m+(λh1 + h2) = λm+(h1) +m+(h2).

Proof. Let h = λh1 + h2 and consider the Pythagorean factorizations

h1 =
b1
a1

, h2 =
b2
a2

, h =
b

a
.

We have the identity
a1a2b = λaa2b1 + aa1b2,

and so

(5.6) Ta1a2bm = λTaa2b1m+ Taa1b2m.

The relation (5.2) gives

Ta1a2bm = Ta1a2Tbm = Ta1a2Tam+(h) = Taa1a2m+(h).

Similarly
Taa2b1m = Taa1a2m+(h1)

and
Taa1b2m = Taa1a2m+(h2).

Inputting these equalities into the relation (5.6) and rearranging, we obtain

Taa1a2
(
m+(h)− λm+(h1)−m+(h2)

)
= 0.

Because aa1a2 is an outer function, the above equality implies that m+(h) − λm+(h1) −
m+(h2) = 0, and so the proof is complete. □

We treat continuity next.

Lemma 5.3. The linear operator m+ : X → BMOA is continuous.
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Proof. SinceX is an F -space by property (i) in Section 5.1, the usual formulation of the closed
graph theorem is applicable to our situation (see [22, Section 2.15]). Hence the operator m+

will be continuous if we can verify the validity of the implication{
hn → h in X

m+(hn) → g in BMOA
⇒ m+(h) = g.

Above we assume that g ∈ BMOA, so that m+(hn) → g in the norm of BMOA (recall
that we have set ∥g∥BMOA := ∥g∥BMOA). Let the two above hypotheses be satisfied. Since
X is continuously contained in N+ by property (ii) in Section 5.1, by Proposition 4.1 and
by passing to a subsequence we may assume that we have the pointwise convergence bn → b
and an → a almost everywhere on T, where hn = bn/an and h = b/a are the corresponding
Pythagorean factorizations. Since the mapping f 7→ Taf is continuous on BMOA, we have

Tag = lim
n

Tam+(hn)(5.7)

= lim
n

Ta−anm+(hn) + Tanm+(hn)

= lim
n

Ta−anm+(hn) + Tbnm

The convergence above holds in the norm of BMOA, and so in particular in the sense of
pointwise convergence on D. Now,

(5.8) Tbnm → Tbm

in (say) H2, and so pointwise on D, since bn → b almost everywhere on T. Since m+(hn) → g
in BMOA, the same is true in the space H4. Therefore, by contractivity of the projection
P+ on L2(T) and Hölder’s inequality, we may estimate

∥Ta−anm+(hn)∥22 = ∥P+[(a− an)m+(hn)]∥22
≤ ∥(an − a)m+(hn)∥22
≤ ∥an − a∥24 · ∥m+(hn)∥24.

Since an → a almost everywhere on T, we obtain ∥Ta−anm+(hn)∥2 → 0, and from (5.7) and
(5.8) we conclude that

Tag(z) = Tbm(z), z ∈ D.
According to (5.4), this means that g = m+(h). We have thus verified thatm+ : X → BMOA
is a closed operator. By the closed graph theorem this operator is also continuous. □

Completion of the proof of Proposition 5.1. Recalling the result of Section 5.3, what remains
to be established is that any universal multiplier m for F(X) induces a continuous Hankel
operator Hm : X → BMOA. By Lemma 5.3, for every h = b/a ∈ X, the equation (5.4)
has a unique solution m+(h) which depends continuously on h ∈ X. Let us suppose that
h = b/a ∈ H∞. Then 1/a ∈ H∞, and we may apply the Toeplitz operator T1/a and relation
(5.2) to the mate equation in (5.4) to obtain

Thm = m+(h).

Since Thm = P+hm, the relation (2.3) implies that

(5.9) m+(h) = Thm = Hmh+ c(h)
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for a constant c(h) which satisfies

|c(h)| = |m̂h(0)|.

In other words, c(h) is the value at z = 0 of the function m+(h). Since evaluations are
continuous on BMOA, it follows that h 7→ m+(h)(0) is a continuous linear functional defined
on all of X. For h ∈ H∞, we have from (5.9) the equality

Hmh = m+(h)−m+(h)(0).

Since in the right-hand side of this equality appears a continuous linear mapping X →
BMOA, the left-hand side extends to a continuous linear operator X → BMOA. That
is, m ∈ H(X,BMOA). □

6. Further comments and remarks

We end the article with a list of a few unresolved matters and ideas for further research.

6.1. Range spaces of coanalytic Toeplitz operators. One consequence of following the
presented new approach to universal multipliers is that we never needed to characterize the
corresponding intersection of co-analytic Toeplitz operator ranges, which is a necessary step
in the Davis-McCarthy approach. Denoting by M(φ) the range of the co-analytic Toeplitz
operator Tφ : H2 → H2, a consequence of results from [3] is that we have

G1/2 =
⋂

φ∈H∞\{0}

M(φ) =
⋂

φ∈H∞\{0}

Mult(M(φ)) =
⋂

b∈F(N+)

Mult(H(b)).

Naively, one may expect from our main result that we should have a similar equality, with
G replaced by Λa

1/p, and the intersections corresponding to spaces M(φ) restricted to those

(outer, bounded) symbols φ for which 1/φ ∈ Hp, namely

Λa
1/p =

⋂
φ:1/φ∈Hp

M(φ) =
⋂

φ:1/φ∈Hp

Mult(M(φ)).

That this is not the case in general is seen by setting p = 2. Then, for every m ∈ H∞ and
1/φ ∈ H2, we have m = Tφg where g = P+(m/φ), so H∞ ⊆

⋂
1/φ∈H2 M(φ). However, the

equality

Λa
1/p =

⋂
φ:1/φ∈Hp

Mult(M(φ))

is not ruled out by this argument. We conjecture that this equality holds.

6.2. Other families of symbols. In this article, we focused on what we considered natural
classes of symbols F(Hp) and F(N q), but similar questions may of course be explored about
universal multipliers for families F(X) corresponding to any other reasonable space X. In
relation to this, recall that we have characterized the multipliers of symbol families F(Hp) for
finite p, and we note also that the case b/a ∈ H∞ corresponds to the equality H(b) = H2, with
equivalence of norms. So Mult(H(b)) = H∞ if b/a ∈ H∞. We have not been able to compute
the universal multipliers for the intermediate case b ∈ F(BMOA). Our Proposition 5.1 does
not apply in this case, since BMOA does not satisfy the hypotheses of that proposition.
What are the universal multipliers in this case?
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6.3. Relating containment of a space within the multiplier algebra. For p > 2, the
authors own previous article [14] allows for a different way to express our main theorem:

there we showed that b/a ∈ H
2p
p−2 is equivalent with Hp ⊂ H(b) (see Theorem A in [14]).

This makes plausible a description of universal multipliers for classes F described in terms of
containing other fixed spaces of analytic functions. The case of the Dirichlet space promises
to offer some resistance.
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