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Abstract. This article consists of two connected parts. In the first part, we study the shift
invariant subspaces in certain P2(µ)-spaces, which are the closures of analytic polynomials in

the Lebesgue spaces L2(µ) defined by a class of measures µ living on the closed unit disk D. The
measures µ which occur in our study have a part on the open disk D which is radial and decreases

at least exponentially fast near the boundary. Our focus is on those shift invariant subspaces

which are generated by a bounded function in H∞. In this context, our results are definitive. We
give a characterization of the cyclic singular inner functions by an explicit and readily verifiable

condition, and we establish certain permanence properties of non-cyclic ones which are important

in the applications. The applications take up the second part of the article. We prove that if
a function g ∈ L1(T) on the unit circle T has a Cauchy transform with Taylor coefficients of

order O
(
exp(−c

√
n)

)
for some c > 0, then the set U = {x ∈ T : |g(x)| > 0} is essentially open

and log |g| is locally integrable on U . We establish also a simple characterization of analytic
functions b : D → D with the property that the de Branges-Rovnyak space H(b) contains a dense

subset of functions which, in a sense, just barely fail to have an analytic continuation to a disk

of radius larger than 1. We indicate how close our results are to being optimal and pose a few
questions.

1. Introduction and main results

1.1. Some background. We will study spaces of analytic functions corresponding to Borel mea-
sures of the form

(1.1) dµ(z) = G(1− |z|) dA(z) + w(z)dm(z),

where dA and dm are the area and arc-length measures on, respectively, the unit disk D := {z ∈
C : |z| < 1} and its boundary circle T := {z ∈ C : |z| = 1}. The radial weight G(1−|z|) living on D
is defined in terms of a continuous, increasing and positive function G, and the weight w living on
T is a general Borel measurable non-negative integrable function. Given such a measure, we may
construct first the Lebesgue space L2(µ) of (equivalence classes of) Borel measurable functions
living on the carrier of µ, and next consider its subspace P2(µ), by which we denote the smallest
closed subspace of L2(µ) which contains the set P of analytic polynomials. The space P2(µ) will
be the setting for the first part of our study.

The shift operator Mz : P2(µ) → P2(µ), which takes a function f(z) to zf(z), is a subnormal
operator, in the sense that it is the restriction of a normal operator, namely Mz : L2(µ) → L2(µ),
to an invariant subspace. From the point of view of an operator theorist, the significance of the
pair (P2(µ),Mz) lies in the fact the study of subnormal operators can essentially be reduced to
the study of the operator Mz : P2(µ) → P2(µ) for some measure µ which is compactly supported
in the plane. The monograph [6] by Conway is an excellent source of information on this topic.

For measures such as (1.1), the space P2(µ) is, like L2(µ), a space of Borel measurable functions
on the closed disk D = D∪T. In certain cases it is even a space of analytic functions on D. In such
a case, each element f ∈ P2(µ), a priori interpreted as a function on D, has a unique restriction
fD to the disk D. The restriction fD must be an analytic function by the virtue of it being a
locally uniform limit of analytic polynomials. We will below use the term irreducible for such a
space which is in this sense ”analytic”. It is a difficult problem (and in general open) to determine
which weight pairs (G,w) as in (1.1) produce an irreducible space. Khrushchev in the article [16]
solved certain special cases of the problem. For instance, his results apply to G(t) = tn for some
n > 0, and w = 1E being a characteristic function of a set E ⊂ T in a certain class (defined
in terms of Beurling-Carleson conditions). Already these results have fascinating applications to
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function theory, of which there are plenty in [16]. The article [25] builds on Khrushchev’s work,
explains the structure of P2(µ) when w = 1E and E is a general subset of T, and showcases further
applications to the theory of the Cauchy integral operator and de Branges-Rovnyak spaces.

1.2. Irreducible P2(µ)-spaces. Recently, the author found in [24] an exact condition for irre-
ducibility of P2(µ) in the case when G(t) decays at least exponentially as t → 0+, thus confirming
a conjecture by Kriete and MacCluer from [20]. Roughly speaking, if G(t) is smaller than the
weight exp(−ct−1) for some c > 0, or more precisely if

(ExpDec) lim inf
x→0+

x log 1/G(x) > 0,

but large enough to satisfy

(LogLogInt)

∫ d

0

log log(1/G(x)) dx < ∞,

for some d > 0, then the space P2(µ) is irreducible if and only if the carrier set of the measure
dµT = w dm on T can be covered by intervals I satisfying the condition

(1.2)

∫
I

logw dm > −∞.

In order to properly state the result we will need to define the following concept of core sets. For
our purposes this concept is critical, and it will appear frequently throughout the article.

Definition 1.1. (Core sets of weights) Let w be a non-negative integrable function on T. We
define core(w) to be the union of all open intervals I for which (1.2) holds. In other words,

(1.3) core(w) = {x ∈ T : there exists open I containing x for which (1.2) holds }

The set core(w) is open, and it does not depend on the particular representative of w in the
space L1(T) of equivalence classes of functions which are Lebesgue integrable on T with respect
to dm.

Definition 1.2. (Carrier sets) Let η be a non-negative Borel measure on T. A Borel subset E
of T is a carrier for η if

η(T \ E) = 0.

If w is a Borel measurable function on T, then we say that a set E is a carrier for w if it is a
carrier for the Borel measure w dm.

Carriers are obviously not unique. The set

(1.4) {x ∈ T : w(x) > 0}
is a carrier for w. If w is only defined up to a set of m-measure zero, then we may take as a carrier
for w any set differing from (1.4) by a set of m-measure zero. Since log 0 = −∞, it is obvious from
(1.2) that core(w) is essentially contained in any carrier of w.

Irreducibility of P2(µ)-spaces of the form (1.1) with G satisfying (ExpDec) and (LogLogInt)
can be characterized in terms of core sets. The next theorem, fundamental to our study, follows
from [24, Theorem A], with the non-trivial part being the equivalence of the third condition and
the other two.

Theorem 1.3. For a space P2(µ) defined by a measure µ of the form (1.1), with G satisfying
(ExpDec) and (LogLogInt), the following three conditions are equivalent:

(i) the space P2(µ) contains no non-trivial characteristic function of a measurable subset of D:
if A is a Borel subset of D and 1A ∈ P2(µ) is not the zero element, then 1A = 1D.

(ii) the space P2(µ) is a space of analytic functions on D in which the analytic polynomials are
dense,

(iii) the set core(w) is a carrier for w, or in other words it coincides with (1.4), up to a set of
m-measure zero.

Definition 1.4. (Irreducible spaces) A space P2(µ) is irreducible if it satisfies the three equiv-
alent conditions stated in Theorem 1.3.
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In particular, the following measures µ correspond to irreducible P2(µ):

(T1) dµ(z) = exp
(
− c

(1− |z|)β
)
dA(z) + w(z)dm(z), c > 0, β ≥ 1

and

(T2) dµ(z) = exp

(
− c exp

(
1

(1− |z|)α

))
dA(z) + w(z)dm(z), c > 0, α ∈ (0, 1).

If the core(w) is not a carrier of w, then the space P2(µ) will contain a full Lebesgue space
L2(wrdm), members of which live only on T. Here wr denotes a certain residual weight. The
residuals play no role in the statements of our main results, but will be important in the proofs.
Their definition is postponed to coming sections.

The reader might wonder what happens in the case β < 1 in (T1). Then (ExpDec) is violated,
and condition (iii) in Theorem 1.3 implies (ii), but the converse is false. This can be inferred
from work of Khruschev in [16], and this idea is further elaborated on in [25]. Also one might
ask what happens if α ≥ 1 in (T2), which means that (LogInt) is violated. This case is less
interesting: Volberg’s theorem in [30] implies that P2(µ) is then either a close cousin of the Hardy
space H2 (this happens when

∫
T logw dm > −∞) or it is not a space of analytic functions at all

(if
∫
T logw dm = −∞). See also the introductory section to [24] for a more detailed account.

1.3. Invariant subspaces generated by singular inner functions. Having established fairly
sharp conditions for irreducibility, a way opens to an operator and function theoretic study of this
class of spaces. Motivated by certain applications which will soon be detailed, in the first part of
the article we study the structure of Mz-invariant subspaces of P2(µ) generated by functions in
H∞, the algebra of bounded analytic functions in D. This question readily reduces to the study
of invariant subspaces generated by singular inner functions

(1.5) Sν(z) = exp
(
−
∫
T

x+ z

x− z
dν(x)

)
, z ∈ D,

where ν is a finite positive singular Borel measure on T. For h ∈ H∞, we will denote by [h] the
smallest Mz-invariant subspace containing h. It is well-known that any singular inner function
generates a non-trivial invariant subspace in the classical Hardy space H2 of square-summable
Taylor series, and it is almost as well-known that in order for Sν to generate a non-trivial invariant
subspace in the standard weighted Bergman spaces (which are P2(µ)-spaces of the kind (1.1)
themselves, with G(t) = tn for some n > −1, and w ≡ 0) we must have ν(A) > 0 for some
Beurling-Carleson set A (see [18], [19], [27]).

Our first main result characterizes the cyclic singular inner functions in the considered class of
P2(µ)-spaces. By cyclicity we mean that [Sν ] = P2(µ). It is not hard to see that the minimal
considered rate of decay (ExpDec) of the part of µ living on D makes every non-vanishing bounded
function be cyclic in P2(µ) in the case that w = 0. Thus only properties of w can stop Sν from
being cyclic.

Theorem A. Let P2(µ) be an irreducible space defined by a measure µ of the form (1.1). The
following two statements are equivalent.

(i) The singular inner function Sν is cyclic in P2(µ).
(ii) The measure ν assigns no mass to the core of the weight w:

ν
(
core(w)

)
= 0.

Note that core(w) is open, and hence Borel measurable, so ν
(
core(w)

)
makes perfect sense.

Example 1.5. Let δa be a point mass at a ∈ T, and

(1.6) w(x) = exp

(
− 1

|x− 1|

)
, x ∈ T.
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Then it is easy to check that
core(w) = T \ {1}.

Consequently, the singular inner function

Sδa(z) = exp

(
− a+ z

a− z

)
, z ∈ D

is cyclic, in the considered class of P2(µ) constructed from w appearing in (1.6), if and only if
a = 1.

Having settled the cyclicity question, we turn our attention to the invariant subspace [Sν ]
generated by a singular inner function corresponding to a measure ν which places all its mass on
the core: ν(T) = ν

(
core(w)

)
. In other words, core(w) is a carrier for ν. A problem which arises in

the theory of normalized Cauchy integrals and de Branges-Rovnyak spaces H(b) (to be discussed
below) is to determine which functions are contained in the intersection H2 ∩ [Sν ], or sometimes
in N+ ∩ [Sν ], where N+ is the Smirnov class of the disk D (see [13] for precise definitions):

N+ = {u/v : u, v ∈ H∞, v outer}
In this context, we have the following result.

Theorem B. Let Sν be a singular inner function corresponding to a measure ν which satisfies

ν(T) = ν
(
core(w)

)
.

In an irreducible P2(µ)-space defined by a measure µ of the form (1.1), the invariant subspace [Sν ]
satisfies

[Sν ] ∩N+ ⊂ SνN+.

In other words, if f ∈ N+ can be approximated by polynomial multiples of Sν in the norm of
P2(µ), and ν places all of its mass on core(w), then Sν appears in the inner-outer factorization
of f . Under the additional assumption that w is bounded, a simple argument will show that in
fact [Sν ] ∩ H2 = SνH

2. In [21] and [23], the feature of Sν appearing in Theorem B is called
its permanence property. It is obvious that a singular inner function satisfying the permanence
property cannot be cyclic.

For the considered class of spaces, Theorem A and Theorem B completely determine the struc-
ture of Mz-invariant subspaces generated by bounded analytic functions. Indeed, it follows that
if h = BSνU ∈ H∞ is the inner-outer factorization of h into a Blaschke product B, singular inner
function Sν and outer function U , then

[h] = [Sνw
],

where νw is the restriction of the singular measure ν to the set core(w).

1.4. Functions of rapid spectral decay and Cauchy integrals. Irreducible spaces find ap-
plications in the theory of Cauchy integrals.

Definition 1.6. (Functions of rapid spectral decay) Let f(z) =
∑

n≥0 fnz
n be an analytic

function in D. If the Taylor coefficients {fn}n≥0 decay so fast that for some c > 0 we have

(RSD) sup
n≥0

|fn| exp
(
c
√
n) < ∞,

then we say that f is a function of rapid spectral decay.

Trivial examples of functions f satisfying (RSD) are the analytic polynomials, and functions
which extend analytically to a larger disk rD = {z ∈ C : |z| < r}, r > 1. In those cases, the limit
in (RSD) is zero even when the term exp

(
c
√
n
)
in (RSD) is replaced by exp

(
cnα

)
for α < 1.

Conversely, if f has an analytic extension to a disk around the origin of radius larger than 1, then
|fn| = O

(
exp(−cn)

)
for some c > 0.

Let us assume that ν is a finite Borel measure for which the Cauchy integral

(1.7) Cν(z) :=
∫
T

1

1− xz
dν(x), z ∈ D
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is a function satisfying (RSD). Can we say something about the nature of the measure ν? The
Cauchy integral Cν has a representation of the form

Cν(z) =
∑
n≥0

νnz
n, z ∈ D

where {νn}n≥0 is the sequence of Fourier coefficients of ν indexed by non-negative integers. The
rest of the coefficients are annihilated under C, and the condition (RSD) gives us no information
about νn for n < 0. However, the following statement is a consequence of the irreducibility of
spaces corresponding to measures of the form (T1).

Theorem C. Let ν be a finite Borel measure on T, and assume that the Cauchy integral Cν ,
given by (1.7), satisfies (RSD). Then the measure ν is absolutely continuous with respect to the
Lebesgue measure dm:

dν = g dm, g ∈ L1(T),
and there exists an open set U which differs from

(1.8) {x ∈ T : |g(x)| > 0}

only by a set of m-measure zero, with the property that to each x ∈ U there corresponds an interval
I ⊂ U containing x for which we have∫

I

log |g(x)| dm(x) > −∞.

The function log |g| is, in general, not integrable on the entire open set U appearing in Theo-
rem C.

In a way, Theorem C is similar to the classical theorem of brothers Riesz on structure of
measures ν on T with vanishing positive Fourier coefficients. In our setting, the vanishing of the
coefficients is replaced by a weaker condition of their rapid decay forced by the condition (RSD).
It should be noted that if we were to replace in (RSD) the term exp

(
c
√
n
)
by exp

(
cnα

)
for any

α < 1/2, and thus consider the weaker unilateral spectral decay condition

sup
n≥0

|νn| exp
(
cnα

)
< ∞,

then a structural result for ν as in Theorem C does not hold: dν = g dm will still be absolutely
continuous, but examples show that g can be chosen so that the set in (1.8) is closed and contains
no interval. This follows from a related work of Khrushchev in [16]. There should be room for a
slight improvement of the result (see the discussion in Section 1.6.4 below). We ought to mention
also that Volberg in [30] found spectral decay conditions making the set in (1.8) fill up the whole
circle T. We will return to both these works below.

1.5. Condition (RSD) in de Branges-Rovnyak spaces. In most classical Hilbert spaces of
analytic functions in the unit disk, the family of functions which extend analytically to a larger
disk forms a dense subset of the space. This is not the case in Hilbert spaces of normalized
Cauchy integrals. These are the so-called model spaces Kθ, where θ is an inner function, and more
generally the de Branges-Rovnyak spaces H(b), where the symbol b is any analytic self-map of the
unit disk. There are several ways to define the space H(b), the easiest perhaps being by stating
that it is the Hilbert space of analytic functions on D with a reproducing kernel of the form

kb(λ, z) =
1− b(λ)b(z)

1− λz
, λ, z ∈ D.

Alternatively, we may realize it as the space of normalized Cauchy integrals of functions f̃ ∈ L2(νb),
given in the special case b(0) = 0 by the formula

(1.9) f(z) =
(
1− b(z)

) ∫
T

f̃(x)

1− xz
dνb(x), z ∈ D.
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Here νb is the Aleksandrov-Clark measure of b, these two objects being related by the formula

(1.10) Re

(
1 + b(z)

1− b(z)

)
=

∫
T

1− |z|2

|x− z|2
dνb(x), z ∈ D.

The normalization refers to multiplication of the Cauchy integral in (1.9) by the factor 1 − b(z),
which ensures that the product lands in H2. It is well-known that model spaces Kθ = H(θ)
correspond to the purely singular measures νθ in (1.10). In fact, every positive finite Borel measure
ν on T corresponds to a function b = bν through the formula (1.10). See [5] for more details.

If θ is a singular inner function, then Kθ will contain no functions which extend analytically
across T. Moreover, it is a consequence of deep results on cyclicity of singular inner functions of
Beurling from [3], and also of more recent results of El-Fallah, Kellay and Seip from [10], that in
fact if θ is singular, then for any non-zero function f(z) =

∑
n≥0 fnz

n ∈ Kθ and for any c > 0 it
holds that

sup
n→∞

|fn| exp
(
c
√
n) = ∞.

This fact is not as deep as the two results cited above which imply it, but it is needed in the
proof of one of our main results. For this reason, we give an elementary proof in Section 6.1. We
mention also that a characterization of density in Kθ of functions in A∞, the algebra of functions
analytic in D with all derivatives extending continuously to D, has been established [22].

The situation is more interesting, and much more difficult to handle, in the general class ofH(b)-
spaces. It was proved long ago by Sarason that the set P of analytic polynomials is contained
and dense in H(b) if and only if b is a non-extreme point of the unit ball of H∞, a condition
characterized by

(1.11)

∫
T
log(∆b) dm > −∞,

where

∆b :=
√
1− |b|2.

In terms of core sets, this result can be stated as follows, and a proof can be found in [28].

Theorem (Sarason). Let b : D → D be an analytic function. The following three statements are
equivalent.

(i) The analytic polynomials are dense in H(b).
(ii) The function b is a non-extreme point of the unit ball of H∞.
(iii) We have the set equality core(∆b) = T.

Since these conditions are very restrictive, it is tempting to make an effort to capture a larger
class of symbols b for which H(b) contains a dense subset of functions in some nice regularity class
which is strictly larger than P. The article [23] connects the approximation problem in H(b) with
the structure of Mz-invariant subspaces of P2(µ), and [21] refines the method to prove the density
of A∞ ∩ H(b) for a large class of symbols b. The method from [23] is very general and applies
to a wide range of approximation problems in H(b). In particular, it applies to approximations
by functions in the class (RSD). Since our structural results in Theorem A and Theorem B are
definitive, we can prove also a definitive result on existence and density of functions f ∈ H(b)
which satisfy (RSD). In fact, we will prove a much stronger (and optimal) result.

In order to state our result, we will need to quantify the spectral decay of a function f by a
condition of the type (RSD) but with exp

(
c
√
n
)
replaced by faster increasing sequences. To this

end, we define below in Definition 5.1 the admissible sequences M = {Mn}n≥0. These sequences
are logarithmically convex (at least eventually, for large n) and are decreasing to zero at least as
fast as exp

(
− c

√
n
)
, but satisfy a condition of the form∑

n≥0

log 1/Mn

1 + n2
< ∞

which prohibits, for instance, their exponentially fast decay.
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Example 1.7. The sequence defined by

(1.12) Mn = exp

(
− c

n

(log(n) + 1)p

)
, n ≥ 1

is admissible for every p > 1 and c > 0, but it is not admissible for p = 1 and any c > 0.

Theorem D. Let b : D → D be an analytic function. The following three statements are equivalent.

(i) The space H(b) contains a non-zero function f which satisfies (RSD).
(ii) For any admissible sequence {Mn}n≥0, the space H(b) contains a non-zero function f(z) =∑

n≥0 fnz
n which satisfies

(1.13) sup
n≥0

|fn|
Mn

< ∞

(iii) The function b vanishes at some point λ ∈ D, or there exists an arc I ⊂ T of positive length
for which ∫

I

log∆b dm > −∞.

In (iii), the condition of vanishing of b at some λ ∈ D is the uninteresting case, sice then H(b)
contains a rational function with no poles on D. For such a function (ii) holds trivially.

To reach Theorem D we only really need the characterization of irreducibility of P2(µ). Proof
of the next theorem requires the full strength of the invariant subspace results developed in the
first part of this article.

Theorem E. Let b : D → D be an analytic function, and b = BSνU be the inner-outer factoriza-
tion of b. The following three statements are equivalent.

(i) The set of functions f in H(b) which satisfy (RSD) is dense in H(b).
(ii) For any admissible sequence {Mn}n≥0, the set of functions f in H(b) which satisfy

(1.14) sup
n≥0

|fn|
Mn

< ∞

is dense in H(b).
(iii) The set core(∆b) is a carrier for ∆b and for the singular measure ν.

Example 1.8. For instance, by applying our theorem to the admissible sequence (1.12) for any
p > 1, we get that the density in H(b) of functions f(z) =

∑
n≥0 fnz

n satisfying

lim
n≥0

|fn| exp(cnα) = 0

simultaneously for any c > 0 and any α ∈ (0, 1), is equivalent to condition (iii) in Theorem E.
Roughly speaking, functions satisfying such decay a condition just barely fail to have an analytic
continuation to a disk larger than D.

Example 1.9. Generalizing the setting of Example 1.5, we may replace a point by a general
closed subset E of T, and define the outer function b0 : D → D by specifying its modulus |b0(x)|,
x ∈ T, to satisfy the equation√

1− |b0(x)|2 = ∆b0(x) :=
1

2
exp

(
− 1

dist(x,E)

)
for x ∈ T \E, where dist(x,E) is the Euclidean distance from the point x to the closed set E, and
|b0(x)| = 1 for x ∈ E. We can easily check that

core(∆b0) = T \ E.

If B is a Blaschke product and Sν is a singuler inner function, then functions of rapid spectral
decay will be dense in the space H(b), with b := BSνb0, if and only if ν(E) = 0.
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Our proof of Theorem E depends crucially on Theorem A and Theorem B, but is otherwise
similar to the proofs in [21] and [23]. However, in the present work we obtain new information on
which functions in H(b) fail to be approximable by classes appearing in Theorem E. These results
are presented in Section 7.

We mentioned earlier that our result is optimal. This is morally true, in the following sense.
Assume thatM = {Mn}n≥0 is a logarithmically convex sequence which is not admissible according
to Definition 5.1, because we have

(1.15)
∑
n≥0

logMn

1 + n2
= −∞.

For instance, M could be defined by (1.12) for p = 1. If Volberg or Kriete and MacCluer were
interested in approximations in H(b)-spaces, they would have proved the following theorem by a
use of their techniques in [20] and [30].

Theorem (Volberg, Kriete-MacCluer). Let M = {Mn}n≥0 be a logarithmically convex se-
quence satisfying the property (1.15) and also the regularity assumption

(1.16) lim inf
n→∞

log(1/Mn)

na
> 0

for some a > 1/2. The following two statements are equivalent.

(i) The space H(b) contains a non-zero function f which satisfies

sup
n≥0

|fn|
Mn

< ∞.

(ii) The function b vanishes at some point λ ∈ D, or b is non-extreme.

Implication (ii) ⇒ (i) above is easy. The proof of (i) ⇒ (ii) is analogous to the proof of
Theorem D, and it goes as follows. Assuming (i), we have a non-zero f ∈ H(b) with the indicated
Taylor series decay. If b is non-vanishing in D, we conclude (as in the proof of Theorem D below)
that Tbf ∈ H(b) also is non-zero and has similar decay, where Tb is the Toeplitz operator with

symbol b. Basic H(b)-theory implies that Tbf is the Cauchy integral of g∆b for some function
g which is square-integrable on T, and Volberg’s theorem presented in [30] implies that ∆b has
an integrable logarithm. The soft regularity assumption in (1.16) is necessary to apply Volberg’s
result.

It follows that the investigation of existence and approximability properties in H(b) of func-
tions with spectral decay satisfying at least (RSD) is essentially completed in Theorem D and
Theorem E.

1.6. Additional comments, questions and conjectures.

1.6.1. Work of McCarthy and Davis. The class of functions satisfying (RSD) has already appeared
in the theory of de Branges-Rovnyak spaces. In [7], McCarthy and Davis showed that a function
h satisfies (RSD) if and only if the multiplication operator Mh acts boundedly on H(b) for all
non-extreme symbols b. In particular, this means that every space H(b) defined by a non-extreme
symbol b contains all functions satisfying (RSD). Our Theorem D then establishes a converse
statement: a characterization of b for which H(b) contains no non-zero such functions.

1.6.2. Relation to Khrushchev’s results. Khrushchev in [16] studied a problem similar to one ap-
pearing in Theorem C. If 1E is the characteristic function of a set E contained in T, and there
exists a function g living only on E such that Cg in (1.7) has some regularity properties, then what
can be said about E? Khrushchev used the phrase removal of singularities of Cauchy integrals
in the context of his study of nowhere dense E ⊂ T which support a function g with a smooth
Cauchy integral Cg. Thus ”removing” the singularities of the irregular set E. His solution is given
in terms of Beurling-Carleson sets. The weighted version of the problem replaces 1E by a general
weight w.

In turn, Theorem E can be seen as a solution to the problem of removal of singularities of
normalized Cauchy integrals in context of the class (RSD), where the possible existence of a
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singular part of the measure ν forces the normalization. Indeed, given a positive finite Borel
measure ν on T, we may ask if the space L2(ν) contains a dense subset of functions f̃ for which
the normalized Cauchy integral in (1.9) (with νb replaced by ν) satisfies (RSD). The condition,
in terms of the associated function b = bν given by (1.10), is given in (iii) of Theorem E. In this
context, it would be of interest to characterize intrinsically the measures ν which correspond to b
satisfying condition (iii) of Theorem E.

Question 1. Let b : D → D be an analytic functions which satisfies the condition (iii) in The-
orem E. Can we describe the structure of the corresponding Aleksandrov-Clark measure νb of b
appearing in formula (1.10) ?

1.6.3. Logarithmic convexity of admissible sequences. In spite of some efforts, the author has not
been able to remove the assumption of logarithmic convexity in Definition 5.1. Surely the most
interesting admissible sequences, such as (1.12), do satisfy such a conditon, but ideally one would
like to remove this assumption. Logarithmic convexity of {Mn}n≥0 plays its part in the proof of
Proposition 5.8. In relation to that, we would like to answer the following question.

Question 2. If c(x), x > 0, is an increasing, positive and continuous function which satisfies

(1.17)

∫ ∞

1

c(x)

x2
dx < ∞,

then under what additional conditons on c may we replace c(x) in (1.17) by its least concave
majorant?

Any interesting condition on c which guarantees the above integrability property of its concave
majorant will lead to slighly improved versions of our theorems.

1.6.4. Non-integrability of logG as a sharp condition. Consider the condition

(LogInt)

∫ d

0

log(1/G(x)) dx < ∞

for some d > 0. The condition (ExpDec) implies that our considered functions G(x) will always
fail to satisfy (LogInt). In fact, it is (at least in the mind of the author) reasonable to conjecture
that several of the results of this article should have sharp improvements in which the requirement
for G to satisfy (ExpDec) is replaced by the requirement for G not to satisfy (LogInt). This
condition is, in turn, equivalent to the statement that∑

n≥0

(
log 1/Mn(G)

)2
1 + n2

= ∞,

where {Mn(G)} is defined in (5.3) and is the sequence of moments of the function G. This
equivalence can be deduced using techniques appearing in Section 5 below. The above condition
appears in [10] as a necessary and sufficient condition for all singular inner functions to be cyclic
in a space P2(µD) with dµ(z) = G(1− |z|)dA(z), and so w = 0 in contrast to the situation dealt
with in the present article.

For instance, a sharp version of the irreducibility of P2(µ) with µ of the form (1.1) would follow
if we could prove the following statement.

Conjecture 1. Assume that G fails to satisfy (LogInt) and w ∈ L1(T) is a non-negative weight
on T. If P2(µ) of the form (1.1) is a space of analytic functions on D, then the set core(w) of the
weight w ∈ L1(T) is a carrier for w.

Given this result, one could attempt to combine our techniques appearing in Section 4 and
those of El-Fallah, Kellay and Seip from [10] to prove the following strong version of both their
result and our Theorem A.

Conjecture 2. In the setting of Conjecture 1, a singular inner function Sν is cyclic in the space
of analytic functions P2(µ) if and only if ν

(
core(w)

)
= 0.

In relation to Theorem C, we expect the following improvement.
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Conjecture 3. The conclusion of Theorem C can be reached if

Cν(z) =
∑
n≥0

νnz
n

merely satisfies

sup
n≥0

|νn|
Mn

< ∞

for some (say, logarithmically convex) sequence {Mn}n≥0 satisfying∑
n≥0

(
log 1/Mn

)2
1 + n2

= ∞.

One can show, by considerations of examples, that all of the above conjectures imply sharp
results.

1.7. Outline of the rest of the article. Section 2 deals with construction of special domains
which look like wizard hats and which support very large positive harmonic functions. We prove
Theorem B and Theorem A in Sections 3 and 4, respectively. Proof of Theorem B relies heavily
on results of Section 2. The second part of the article starts in Section 5. There we deal with some
preparatory estimates on moments sequences which are needed later. Theorem D and Theorem E
are proved in Sections 6 and 7. The techniques used in these sections come from [23], but we
refine some of the methods and prove auxilliary results of hopefully independent interest. Finally,
in Section 8, we prove Theorem C.

1.8. Some notation. For a measure µ on D we will denote by µD and µT its restriction to D and
T, respectively. In some contexts we will also use the same notations µD and µT to emphasize that
the considered measure lives only on D or T. The area measure dA will always be normalized by
the condition A(D) = 1, and a similar convention will be used also for the arc-length measure on
the circle: m(T) = 1. We let log+(x) = max

(
0, log x

)
.

The symbol ∥·∥µ always denotes the usual L2(µ)-norm corresponding to the finite positive Borel
measure µ. For a set E ⊂ T, we sometimes use the shorter notation L2(E) to denote the space of
functions on T which vanish outside of E and are square-integrable with respect to the Lebesgue
measure m. The notation

〈
·, ·
〉
denotes different kinds of duality pairings between spaces. By〈

·, ·
〉
L2 we will denote the standard inner product in L2(T).

The operator P+ : L2(T) → H2 is the orthogonal projection onto the Hardy space H2. For
a bounded analytic function h, the notation Th : H2 → H2 stands for the co-analytic Toeplitz

operator with symbol h, this operator being defined by the formula Thf = P+hf .

2. Wizard hats and their harmonic measures

The proof of Theorem B relies on a technique of restriction of a convergent sequence of analytic
functions to a certain subdomain of D. It is easier to construct the corresponding domain in the
setting of a half-plane, and later use a conformal mapping argument. We will work in the upper
half-plane H. There, our domain looks like a wizard’s hat (see Figure 1).

Harmonic measures will play an important role in our discussion, so we start by recalling some
basic related notions, and set some further notations. Let Ω be a Jordan domain in the plane. The
domains which will appear in our context have a boundary consisting of a finite union of smooth
curves. Let ω(z, E,Ω) denote the harmonic measure of a segment E of the boundary ∂Ω, based
at the point z ∈ Ω. Then

z 7→ ω(z, E,Ω), z ∈ Ω

is a positive harmonic function in Ω which extends continuously to the boundary ∂Ω except at the
endpoints of E. It attains the boundary value 1 at the relative interior of E, and boundary value
0 on ∂Ω \ E. Let B(∂Ω) denote the Borel σ-algebra on ∂Ω. For each fixed z0 ∈ Ω, the mapping

A 7→ ω(z0, A,Ω), A ∈ B(∂Ω)
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defines a positive Borel probability measure on ∂Ω. The reader can consult the excellent books by
Garnett and Marshall [14] and by Ransford [26] for more background and other basic facts about
harmonic measures which are used in this section.

Let
H = {z = x+ iy ∈ C : y > 0}

denote the upper half-plane of C. The main efforts of this section will go into estimation of the
harmonic measure on a wizard hat domain W . The domain is constructed from an interval I ⊂ R
and a profile function p(x), x ≥ 0, which by our definition is increasing, positive and continuous,
smooth (say, continuously differentiable) for x > 0, and which satisfies p(0) = 0. Given a profile
function p and an interval I = (a, b), we define the wizard hat W to be the simply connected
Jordan domain

(2.1) W = W (p, I) :=
{
z = x+ iy ∈ H : x ∈ I, y < min

[
p(x− a), p(b− x)

]}
.

The boundary ∂W is a piecewise smooth curve, with three smooth parts divided by three cusps.
An example of a domain W , constructed from a profile function p(x) = xq for some q > 1, is
marked by the shaded area in Figure 1. Our goal is to prove a result regarding existence of
harmonic functions which grow rapidly along ∂W ∩H = ∂W \ R.
Definition 2.1. (Majorants) Let d > 0 be some positive number. A positive function F :
(0, d) → [0,∞) will be called a majorant if it satisfies the following two properties:

(i) F (t) is a decreasing function of t > 0, and limt→0+ F (t) = +∞,

(ii)
∫ d

0
logF (t) dt < ∞.

The properties of F appearing in Definition 2.1 are related to growth estimates on functions in
the investigated class of P2(µ)-spaces. See Lemma 3.6 below.

Proposition 2.2. Let I ⊂ R be a finite interval and F be a majorant in the sense of Definition 2.1.
There exists a profile function p, a wizard hat W = W (p, I), and a positive harmonic function
u on W which extends continuously to the boundary ∂W except at the two cusps of ∂W on R,
satisfies u(x) = 0 for x in the interior of I, and u(z) = F (Im z) for z ∈ ∂W ∩H.

In order to prove Proposition 2.2, we will need to estimate the harmonic measure ω(z0, Bt,W )
of the following piece Bt of the boundary of W :

(2.2) Bt =
{
z = x+ iy ∈ ∂W : 0 < y, a < x < t

}
.

See Figure 1, where Bt is marked. A result of Beurling and Ahlfors (see [14, Theorem 6.1 of
Chapter IV]) can be applied to the union of W , I and the reflected domain W = {z : z ∈ W} to
obtain a good estimate for the harmonic measure of Bt.

Proposition 2.3. (Beurling-Ahlfors estimate) Let θ be a positive continuous function defined
on an interval (a, b) ⊂ R, and let Ω be the domain

Ω = {z = x+ iy : |y| < θ(x), a < x < b
}
.

If z0 ∈ Ω and Sa = {z ∈ ∂Ω : Re z = a} is the left vertical part of the boundary of Ω, then

ω(z0, Sa,Ω) ≤
8

π
exp

(
− 2π

∫ Re z0

a

dx

θ(x)

)
.

In Figure 1, the symmetrized domain W̃ := W ∪ I ∪ W is bounded by the top part of the

boundary of W and the dotted reflection below the line R. Let W̃t be the domain obtained by

cutting W̃ along the cross-section St = {z ∈ W̃ : Re z = t} and keeping the right part of the

two resulting pieces. Define Wt similarly (so that Wt is the intersection of W̃t and H). The
Beurling-Ahlfors estimate immediately implies that

ω(z0, St, W̃t) ≤
8

π
exp

(
− 2π

∫ Re z0

t

1

p(x− a)
dx

)
,
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I

z0·

W = W (p, I)

a b

Bt

St

R

Figure 1. The wizard hat W and a piece Bt of its boundary.

where z0 ∈ Wt is as in Figure 1. By a comparison of the values on ∂Wt of the two harmonic

functions ω(z,Bt,W ) and ω(z, St, W̃t), and the maximum principle for harmonic functions, we get
the inequality

(2.3) ω(z,Bt,W ) ≤ ω(z, St, W̃t), z ∈ Wt.

In particular, this holds at z0. We have obtained the following harmonic measure estimation.

Proposition 2.4. Let W = W (p, I) be the wizard hat given by (2.1), Bt the piece of its boundary
given by (2.2) and z0 ∈ W . Then

ω(z0, Bt,W ) ≤ 8

π
exp

(
− 2π

∫ Re z0

t

1

p(x− a)
dx

)

whenever a < t < Re z0.

Given a majorant F as in Definition 2.1, we will now show how to construct a profile function
p and harmonic function u which satisfies the properties stated in Proposition 2.2. Without loss
of generality, we may assume that I = (0, 2). For some large integer n0 > 0, let

(2.4) αn := 2−n−n0 , n ≥ 1.

We define also the sequence

(2.5) γn := αn logF (αn), n ≥ 1

This sequence is positive if the integer n0 in (2.4) is chosen large enough. Next, we make the
following simple observation.

Lemma 2.5. For any ϵ > 0, there exists an integer n0 > 0 such that, with {αn}n≥1 defined by
(2.4) and {γn}n≥1 defined by (2.5), we have

∞∑
n=1

γn < ϵ.
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Proof. Since F (t) is a majorant, by part (i) of Definition 2.1 we have∫ α1

0

logF (t) dt =

∞∑
n=1

∫ αn

αn+1

logF (t) dt

≥
∞∑

n=1

logF (αn)(αn − αn+1)

=

∞∑
n=1

logF (αn)αn+1

=
1

2

∞∑
n=1

γn,

where we used that αn − αn+1 = αn+1 = αn/2. Now, by property (ii) in Definition 2.1 we have

lim
α1→0+

∫ α1

0

logF (t) dt = 0

and so our claim follows. □

We set n0 to some value which ensures that

(2.6)

∞∑
n=1

γn < 1/2,

or in other words, the sum
∑∞

n=1 γn is less than one quarter of the length of the interval I = (0, 2).
Further, we let {tn}n≥1 be a sequence of positive numbers starting with

t1 = 1,

which tends monotonically to 0. We shall soon define {tn}n≥1 by specifying the sequence of
differences {∆tn}n≥1, where

∆tn := tn − tn+1, n ≥ 1.

The differences ∆tn are positive numbers, and t2, t3, . . . will be recursively defined in terms of
those differences by the relations

t2 = t1 −∆t1, t3 = t2 −∆t2,

and so on. In order for so defined sequence {tn}n≥1 to converge to zero it is necessary and sufficient
that

(2.7)

∞∑
n=1

∆tn = 1,

a requirement which we will later ensure. Given any {tn}n≥1 as above, a profile function p may
be readily constructed which satisfies

(2.8) p(tn) = αn, n ≥ 1.

Indeed, since the sequence {tn}n≥1 is assumed to be monotonically decreasing to zero, the function
p can be chosen to be smooth, increasing and positive for t > 0, and satisfy p(0) = 0. A proper
choice of {tn}n≥1 will produce a wizard hat with our desired properties. Assume that {tn}n≥1

has been given, let W = W (p, I) be the corresponding wizard hat, and ω(·) = ω(z0, ·, ∂W ) be the
harmonic measure at some point z0 = 1 + y0i ∈ W which lies on the symmetry line of W . Let
ũ(z) be defined on ∂W by

(2.9) ũ(z) =

{
F (Im z), z ∈ ∂W ∩H,

0, z ∈ ∂W ∩ R.

We will ensure that ũ ∈ L1(ω). Since F is decreasing, the definition of W shows that for any
n ≥ 1 the values of the function ũ on the arc Btn \Btn+1 are dominated by its value at the point
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z ∈ Btn \Btn+1 which lies closest to the real line R, i.e., at the point z = tn+1+ ip(tn+1). In other
words, we have

(2.10) sup
z∈Btn\Btn+1

ũ(z) = F
(
p(tn+1)

)
.

Moreover, from positivity and monotonicity of p, and from Proposition 2.4, we deduce the estimate

ω
(
Btn \Btn+1

)
≤ ω(Btn) ≤

8

π
exp

(
− 2π

∫ tn−1

tn

1

p(x)
dx

)

≤ 8

π
exp

(
− 2π

∆tn−1

p(tn−1)

)
(2.11)

which holds for n ≥ 2.
In order to have ũ ∈ L1(ω) it is sufficient to ensure that

∫
Bt2

ũ(z)dω(z) < ∞. To this end, we

use (2.10) and (2.11) to estimate

∫
Bt2

ũ(z)dω(z) =

∞∑
n=2

∫
Btn\Btn+1

ũ(z)dω(z)

≤ 8

π

∞∑
n=2

F
(
p(tn+1)

)
exp

(
− 2π

∆tn−1

p(tn−1)

)

=
8

π

∞∑
n=2

exp

(
logF

(
p(tn+1)

)
− 2π

∆tn−1

p(tn−1)

)

=
8

π

∞∑
n=2

exp

(
1

p(tn+1)

(
logF

(
p(tn+1)

)
p(tn+1)− 2π∆tn−1

p(tn+1)

p(tn−1)

))

=
8

π

∞∑
n=2

exp

(
2n+1+n0

(
γn+1 −

π∆tn−1

2

))
.(2.12)

In the last step we used (2.4), (2.5) and (2.8). We may now specify the values of {tn}n≥1 by
setting the values of the differences:

(2.13) ∆tn−1 =
A

n2
+

2

π
γn+1, n ≥ 2.

for an appropriate constant A > 0 which ensures the necessary summation condition (2.7). This
can be done, since ∑

n=2

2

π
γn+1 < 1/π < 1

by (2.6). We obtain from (2.12) that∫
Bt2

ũ(z)dω(z) ≤ 8

π

∞∑
n=2

exp
(
− Aπ

2

2n+1+n0

n2

)
< ∞.

Consequently, with this definition of {tn}n≥1 and a corresponding profile function p, we have that
ũ ∈ L1(ω).

We may now complete the proof of Proposition 2.2. Let W and p be chosen as above, and
ϕ : D → W be a conformal mapping which maps 0 ∈ D to z0 ∈ W . Since W is a Jordan domain,
ϕ extends to a homeomorphism between D ∪ T and W ∪ ∂W . If v : T → [0,∞) is defined by
v = ũ ◦ ϕ, then a change of variables shows that∫

T
v dm =

∫
∂W

ũ dω < ∞.

Since ũ is continuous on all of ∂W except at the two cusps of ∂W on R, the function v is continuous
on T except at the two points which map under ϕ to the cusps. We verified above that v ∈ L1(T),
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so we may extend v to D by means of its Poisson integral. This extension is continuous in D ∪ T
except at the two points corresponding to the cusps. If we define u in W by u = v ◦ ϕ−1, then u
is the harmonic function sought in Proposition 2.2.

3. Proper invariant subspaces generated by singular inner functions

The goal of this section is to prove Theorem B.

3.1. Technical lemmas. Similarly to Section 2, we prove the next lemma in the upper half-plane
H = {z ∈ C : Im z > 0}. This is done, again, only for convenience. An elementary conformal
mapping argument will carry the result over to the intended domain D.

In this section, the Lebesgue measure (length measure) on R will be denoted by dt, and the
dt-measure of a set A will be denoted by |A|, similar to lengths of sets on the circle T (this
should not cause confusion). The algebra of bounded analytic functions in H will be denoted by
H∞(H). In the proofs below we shall use some basic facts regarding H∞(H), and in particular
some factorization results. An exposition of the relevant background can be found in [9, Chapter
11], [13, Chapter II] or [17, Chapter VI].

Every function h ∈ H∞(H) admits an inner-outer factorization into

(3.1) h(z) = ceiazB(z)Sν(z)U(z), z ∈ H.

Here c is some unimodular constant, a ≥ 0, B is a Blaschke product given by

B(z) =
(z − i

z + i

)m ∏
h(α)=0,

α̸=i

i− α

i− α
· z − α

z − α
, z ∈ H

where m is a non-negative integer, Sνh
is a singular inner function given by

Sνh
(z) = exp

(
− 1

iπ

∫
R

(1 + tz)

(t− z)

dνh(t)

(1 + t2)

)
, z ∈ H

where νh is a singular positive Borel measure on R, and U is the outer function given by

U(z) = exp

(
1

iπ

∫
R

(1 + tz) log |h(t)|
(t− z)(1 + t2)

dt

)
, z ∈ H.

The measures (1+ t2)−1dνh(t) and (1+ t2)−1 log |h(t)| dt appearing in the integrals above are both
finite. It follows from this factorization that we have

log |h(z)| = −αy + log |B(z)|(3.2)

− 1

π

∫
R

y

(x− t)2 + y2
dνh(t)

+
1

π

∫
R

y

(x− t)2 + y2
log |h(t)|dt, z = x+ iy ∈ H

The last two terms in (3.2) represent the Poisson integrals Pνh
and Plog |h| of the measure νh and

of the function log |h|, respectively.

Lemma 3.1. Let J be a finite open interval of R. With notation as above, as y → 0+, the
restrictions to J of the measures log |h(t+ iy)|dt converge weak-star to the restriction to J of the
measure log |h(t)|dt− dνh(t).

The lemma follows easily from results presented in de Branges’ book [8, Theorem 3 and Problem
26]. We sketch an argument for the reader’s convenience.

Proof of Lemma 3.1. If ϕ is any smooth function which is supported on a compact subset of J ,
then by the symmetry of the Poisson kernel, we have

(3.3)

∫
R
ϕ(t)Pνh

(t+ iy)dt =

∫
R
Pϕ(t+ iy)dνh(t),
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where Pϕ is the Poisson integral of ϕ. Since ϕ is uniformly continuous on R, Pϕ(t + iy) → ϕ(t)
uniformly in t as y → 0+. Moreover, the compact support of ϕ implies that |Pϕ(t+ iy)| = O(1/t2)
as |t| → ∞, uniformly in, say, y ∈ (0, 1). Thus expression (3.3) and the finiteness of the measure
(1 + t2)−1dνh(t) implies now that

lim
y→0+

∫
R
ϕ(t)Pνh

(t+ iy)dt =

∫
R
ϕ(t)dνh(t),

and we have shown that Pνh
(t + iy)dt converges weak-star to νh on the interval J . By the same

argument Plog |h|(t+ iy)dt converges weak-star to log |h(t)|dt on J .
We consider now the measures log |B(t + iy)|dt. Jensen’s inequality for the upper-half plane

(see, for instance, [15, p. 35]) implies that

log |B(i+ iy)| ≤
∫
R

log |B(t+ iy)|
π(1 + t2)

dt.

Thus by letting y tend to 0+, we obtain

log |B(i)| ≤ lim inf
y→0+

∫
R

log |B(t+ iy)|
π(1 + t2)

dt ≤ 0.

The last inequality is trivial, since log |B| is negative in H. For a finite Blaschke product B0, the
limit between the inequalities above is certainly equal to 0. Thus we obtain

log |B(i)| − log |B0(i)| ≤ lim inf
y→0+

∫
R

log |B(t+ iy)|
π(1 + t2)

dt ≤ 0.

Now let B0 tend to B through a sequence of finite partial products of B to obtain

lim
y→0+

∫
R

log |B(t+ iy)|
π(1 + t2)

dt = 0.

This says that the restriction to J of log |B(t+ iy)|dt converges to 0 even in variation norm.
The expression (3.2) now implies the weak-star convergence result we are seeking.

□

Definition 3.2. (Uniform absolute continuity) If {fn dt}n≥1 is a sequence of non-negative
absolutely continuous Borel measures on R and I ⊂ R is an interval, then we will say that the
sequence {fn dt}n≥1 is uniformly absolutely continuous on I if to each ϵ > 0 there corresponds a
δ > 0, independent of n, such that for Borel sets A we have

A ⊂ I, |A| < δ =⇒
∫
A

fn dt < ϵ.

Recall that the notion of a majorant has been introduced in Definition 2.1.

Lemma 3.3. Let I be a finite interval of the real line R, θ = Sν a singular inner function in H
defined by a singular measure ν supported in the interior of I, and {hn}n≥1 a sequence of functions
in H∞(H) such that

lim
n→∞

θ(z)hn(z) = h(z), z ∈ H,

where h ∈ H∞(H) is a non-zero function. Assume that

(i) there exists a majorant F for which we have

sup
z=x+iy∈R

|θ(z)hn(z)| exp
(
− F (y)

)
< C

for some constant C > 0 independent of n, and where R is some rectangle in H with base I:

R = R(I, d) := {z = x+ iy ∈ H : x ∈ I, y < d},

(ii) the sequence of positive Borel measures {log+ |hn|dt}n≥1 is uniformly absolutely continuous
on an interval larger than I.

Then h/θ ∈ H∞(H).
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Proof. The assumption (ii) implies that

sup
n

∫
I

log+ |hn| dt < ∞.

So, denoting by 1I the characteristic function of the interval I and by passing to a subsequence,
we can assume that the measures 1I log

+ |hn|dt converge weak-star to a non-negative measure ν0
supported on I. The measure ν0 must be absolutely continuous with respect to dt: any set N ⊂ I
of dt-measure zero can be covered by an open set U of total length arbitrarily small, and then we
can use (ii) to conclude that

ν0(N) ≤ ν0(U) ≤ lim inf
n→∞

∫
U

log+ |hn|dt < ϵ

for any ϵ > 0. Consequently dν0 = w dt for some non-negative w ∈ L1(I). We denote by uI the
harmonic function in H which is the Poisson extension of the measure dν0 = w dt to H:

uI(z) =
1

π

∫
I

y

(x− t)2 + y2
w(t)dt, z = x+ iy ∈ H.

Let also un denote the Poisson extension of the measure 1I log
+ |hn|dt:

un(z) =
1

π

∫
I

y

(x− t)2 + y2
log+ |hn(t)| dt, z = x+ iy ∈ H.

The assumption (i) implies that

log |θ(z)|+ log |hn(z)| ≤ c+ F (y), z = x+ iy ∈ R

for some positive constant c > 0. By Proposition 2.2, there exists a wizard hat domain W =
W (p, I) and a corresponding positive harmonic function u defined on W which satisfies

log |θ(z)|+ log |hn(z)| ≤ u(z), z ∈ ∂W ∩R.

By the assumption that the singular measure ν defining θ is supported in the interior of I, it
follows that θ is analytic and non-zero in a neighbourhood of ∂W ∩R, and so log |θ(z)| is bounded
on ∂W ∩ R. Therefore, by possibly replacing u by a positive scalar multiple of itself, in fact we
have that

(3.4) log |hn(z)| ≤ u(z), z ∈ ∂W ∩R.

For the bottom side I of the wizard hat, we have the non-tangential boundary value inequality

(3.5) log |hn(x)| ≤ un(x)

for dt-almost every x ∈ I. This follows immediately from elementary boundary behaviour prop-
erties of Poisson integrals. We would like to conclude from the two inequalities (3.4) and (3.5)
that

(3.6) log |hn(z)| ≤ u(z) + un(z), z ∈ W.

Indeed such a generalization of the maximum principle holds, and we will carefully verify this
claim in Lemma 3.4 below. Assuming the claim, we recall that

hn(z) → h(z)/θ(z), n → +∞
in all of H, and so by letting n → +∞ we obtain, from (3.6) and the earlier mentioned weak-star
convergence of measures (which guarantees that un(z) → uI(z) for z ∈ H), that

(3.7) log |h(z)| − log |θ(z)| ≤ u(z) + uI(z), z ∈ W.

Let J be some interval containing the support of ν, and which is strictly contained in I. By
Lemma 3.1, as y → 0+, the restrictions to J of the real-valued measures log |h(t+ iy)|dt converge
weak-star to the restriction to J of the measure log |h(t)|dt − dνh(t). Similar claims hold for the
Poisson integrals

(3.8) −Pν(z) = log |θ(z)| = − 1

π

∫
R

y

(x− t)2 + y2
dν(t), z = x+ iy ∈ H
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and Pw = uI . For sufficiently small y > 0 we have that J + iy := {x + iy : x ∈ J} ⊂ W . Thus
from the weak-star convergence of measures discussed above, the inequality (3.7), and the fact
that u ≡ 0 on J , we obtain the real-valued measure inequality

log |h(t)|dt− dνh(t) + dν(t) ≤ w(t)dt on J.

This measure inequality is to be interpreted in the following way:

w(t)dt− log |h(t)|dt+ dνh(t)− dν(t)

is a non-negative measure on J . The dt-singular part of this measure is dνh − dν, which is thus
non-negative on J . Since dν is supported inside J , in fact dνh−dν is non-negative in all of R. Now
subtracting (3.8) from (3.2), using the inequality −αy + log |B(z)| ≤ 0 and the non-negativity of
dνh − dν and of the Poisson kernel, we get for z = x+ iy ∈ H that

log |h(z)| − log |θ(z)| ≤ 1

π

∫
R

y

(x− t)2 + y2
log |h(t)|dt

≤ 1

π

∫
R

y

(x− t)2 + y2
log(∥h∥∞)dt

= log(∥h∥∞).

By exponentiating, we finally obtain

|h(z)/θ(z)| ≤ ∥h∥H∞(H), z ∈ H.

□

We need to verify the claim made in the course of the proof of Lemma 3.3 which lead to the
fundamental inequality (3.6).

Lemma 3.4. Let the wizard hat W = W (p, I) be as in the proof of Lemma 3.3, f be a bounded
analytic function in W and u be a positive harmonic function in W . Assume that both f and u
extend continuously to ∂W ∩ H and also that both have non-tangential limits almost everywhere
on I. If we have that log |f(z)| ≤ u(z) for z ∈ ∂W ∩ H, and moreover that the non-tangential
limits of log |f | on I are dt-almost everywhere dominated by the non-tangential limits of u on I,
then log |f(z)| ≤ u(z) for all z ∈ W .

Proof. Let ϕ : D → W be a conformal mapping. The local smoothness of the boundary of W and
basic conformal mapping theory ensure that ϕ is conformal at almost every point of T (see [14,
Chapter V.5]). This implies that the functions log |f ◦ ϕ| and u ◦ ϕ, which are defined in D, have
non-tangential limits almost everywhere on T. Let ũ ◦ ϕ be a harmonic conjugate of u ◦ ϕ in D
and consider the function H(z) = exp

(
− u ◦ ϕ(z) − iũ ◦ ϕ(z)

)
, z ∈ D. By positivity of u, the

function H is bounded in D, and our assumptions leads to the conclusion that the non-tangential
boundary values on T of the bounded function (f ◦ ϕ)(z)H(z) ∈ H∞(D) are not larger than 1 in
modulus. Thus by basic function theory in D, we obtain the inequality |(f ◦ ϕ)(z)H(z)| ≤ 1 for
all z ∈ D. This easily translates into log |f(z)| ≤ u(z) for z ∈ W . □

We will need Lemma 3.3 in the disk D. Here is the precise statement which we will use. The
uniform absolute continuity of sequences of Borel measures on arcs I of the circle T is defined
analogously to how it was defined in Definition 3.2 for intervals on the line.

Corollary 3.5. Let I be an arc properly contained in the circle T, θ = Sν be a singular inner
function in D defined by a singular measure ν supported in the interior of I, and {hn}n≥1 be a
sequence of functions in H∞ such that

lim
n→+∞

θ(z)hn(z) = h(z), z ∈ D

where h ∈ H∞. Assume that
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(i) there exists a majorant F for which we have

sup
z∈D

|θ(z)hn(z)| exp
(
− F

(
1− |z|

))
< C

for some positive constant C > 0 independent of n,
(ii) the sequence of positive Borel measures {log+ |hn|dm}n≥1 is uniformly absolutely continuous

on an arc larger than I.

Then h/θ ∈ H∞.

It is easy to see that Lemma 3.3 implies Corollary 3.5. Indeed, if ϕ : H → D is a conformal map
for which ϕ−1(I) is a finite segment on R, then the distortion of lengths and distances by the map
ϕ is bounded above and below near ϕ−1(I) and I, since ϕ is a bi-Lipschitz bijection between some
open sets containing ϕ−1(I) and I. For instance, the growth condition (i) in Corollary 3.5 for the
sequence {Sνhn}n≥1 is easily translated into a corresponding condition (i) in Lemma 3.3 for the

sequence {Sν̃ h̃n}n≥1, where Sν̃ := Sν ◦ϕ and h̃n := hn ◦ϕ, by replacing F (t) with a new majorant

of the form F̃ (t) := F (at) for some a > 0. Moreover, the mapping ϕ will preserve the uniform
absolute continuity properties of the corresponding measures. Thus Corollary 3.5 can readily be
deduced from Lemma 3.3 and a change of variables argument.

3.2. Proof of Theorem B. Theorem B follows almost immediately from Corollary 3.5, we just
need to verify that a bounded sequence in the corresponding P2(µ)-space satisfies properties (i)
and (ii) in Corollary 3.5. This is done in the next two lemmas.

Lemma 3.6. Let

dµD(z) = G(1− |z|)dA(z),
where G satisfies the condition (LogLogInt) appearing in Section 1. For z ∈ D, denote by

Ez := sup
f∈P,

∥f∥µD=1

|f(z)|

the norm of the evaluation functional z 7→ f(z) on P2(µD). There exists a majorant F such that

Ez ≤ exp
(
F (1− |z|)

)
, z ∈ D.

Proof. Fix z ∈ D, δ = (1 − |z|)/2 and let B(z, δ) denote the ball around z of radius δ. By
subharmonicity of the function z 7→ |f(z)| and the Cauchy-Schwarz inequality, we have

|f(z)| ≤ 1

δ2

∫
B(z,δ)

|f(z)|dA(z)

≤ 1

δ2
∥f∥µD

√∫
B(z,δ)

1

G(1− |z|)
dA(z).

Since G is assumed to be an increasing function, we may estimate the integral inside the square
root by ∫

B(z,δ)

1

G(1− |z|)
dA(z) ≤ 1

δ2
1

G
(
(1− |z|)/2

) .
Putting this into the previous estimate, we obtain

|f(z)| ≤ ∥f∥µD

δ3

√
1

G
(
(1− |z|)/2

) =
8∥f∥µD

(1− |z|)3

√
1

G
(
(1− |z|)/2

)
Now set

F (t) := log
( 8

t3

)
+

1

2
log
( 1

G(t/2)

)
, t ∈ (0, 1].

By the above estimate, the norm Ez of the evaluation functional is bounded by

Ez ≤ exp
(
F (1− |z|)

)
, z ∈ D.
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Moreover, F is a decreasing function, and by virtue of G satisfying (LogLogInt), F also certainly
satisfies ∫ d

0

logF (t) dt < ∞

if d > 0 is some small number. Thus F is a majorant in the sense of Definition 2.1. □

Lemma 3.7. Assume that the weight w satisfies∫
I

logw dm > −∞

for some arc I ⊂ T. If {fn}n≥1 are positive functions such that∫
I

fp
nw dm < C, n ≥ 1

for some constant C > 0 and some p > 0, then the sequence {log+ fn dm}n≥1 is uniformly abso-
lutely continuous on I.

Proof. Note that

log+ fn ≤ log+(fnw
1/p) + log+(w−1/p)

≤ 1

p
log+(fp

nw) +
1

p
log+(1/w)

:= gn + g,

where it follows from the assumption that gn are positive functions which form a bounded subset
of (say) L2(I), and g ∈ L1(I). Clearly, if A is a Borel subset of I, then by Cauchy-Schwarz
inequality we obtain ∫

A

gn dm ≤
√
|A| · ∥gn∥L2(I),

so that the family {gndm}n≥1 is uniformly absolutely continuous on I. Then the above inequalities

imply that {log+ fn dm}n≥1 is a uniformly absolutely continuous sequence on I. □

Proof of Theorem B. Let h ∈ [Sν ] ∩ N+. Since h ∈ [Sν ], there exists a sequence of polynomials
{pn}n≥1 such that Sνpn converges to h in the norm of P2(µ). Multiplying h by a suitable bounded
outer function u we can ensure that hu ∈ H∞, and that Sνpnu converges to hu (see the discussion
following Lemma 4.2 below). Let {Kj}j be an increasing sequence of compact sets which are finite
unions of intervals and such that ∪jKj = core(w). By Corollary 3.5, Lemma 3.6 and Lemma 3.7,
whenever νj is the restriction of ν to the compact subset Kj , we have that hu/Sνj

∈ H∞ with the

bound ∥hu/Sνj
∥∞ ≤ ∥hu∥∞. The assumption that ν(T) = ν

(
core(w)

)
means that the restrictions

νj converge weak-star to the measure ν. Thus

|h(z)u(z)/Sν(z)| = lim
j→∞

|h(z)u(z)/Sνj
(z)| ≤ ∥hu∥∞, z ∈ D

In particular, since u is outer, it follows that Sν divides the inner factor of h. Thus h/Sν ∈ N+. □

4. Cyclic singular inner functions

In this section we will study the cyclicity of singular inner functions, and prove Theorem A.

4.1. Weak-star approximation of singular measures, with obstacles. The cyclicity in
P2(µ) of the singular inner function Sν will follow from the existence of a sequence of non-negative
bounded functions {fn}n≥1 for which the measures {fn dm}n≥1 converge weak-star to ν. In our
context the functions fn will have to satisfy a severe restriction on their size, namely

(4.1) 0 ≤ fn(x) ≤ log+(1/w(x)), x ∈ T.
In case w(x) = 0, the right-hand side is to be interpreted as +∞ (i.e., no size restriction on fn at
the point x). Essentially, the obstacle (4.1) prohibits the existence of an approximating sequence
{fndm}n≥1 if some part of the mass of ν is located in ”wrong” places on T. However, if ν is carried
outside of the core set of w, then such a sequence exists. This is the content of the next lemma.
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Lemma 4.1. Let ν be a positive singular Borel measure on T which satisfies

ν
(
core(w)

)
= 0.

Then there exists a sequence of non-negative bounded functions {fn}n≥1 satisfying the following
three properties:

(i) the non-negative measures {fn dm}n≥1 converge weak-star to ν,
(ii)

∫
T fn dm = ν(T),

(iii) the functions fn obey the bound (4.1).

Proof. Let us first suppose that ν assigns no mass to any singletons, so that ν({x}) = 0 whenever
x ∈ T. For any positive integer n, we let Dn be the family of 2n disjoint open dyadic intervals, each
of length 2π · 2−n, such that their union covers the circle T up to finitely many points, and such
that the system ∪n≥1Dn possesses the usual dyadic nesting property: each d ∈ Dn is contained
in a unique d′ ∈ Dn−1. Fixing an integer n ≥ 1, we will specify how to define fn on each of the
intervals dj ∈ Dn, 1 ≤ j ≤ 2n, in such a way that the above three properties hold.

If ν(dj) = 0, then we simply set fn ≡ 0 on dj . Conversely, if ν(dj) > 0, then since ν
(
core(w)

)
=

0, it must be that ν(dj) = ν(dj \ core(w)) > 0. It follows that dj \ core(w) is non-empty. Pick
some point x ∈ dj \ core(w). For any open interval I which contains x in its interior we have∫
I
log+(1/w) dm = +∞ (else x would have been a member of core(w)). Pick such an interval I

which is contained within dj . If there exists a subset A ⊂ I satisfying m(A) = |A| > 0 on which
w is identically zero, then we may set

fn(x) = ν(dj)|A|−11A(x), x ∈ dj

where 1A is the characteristic function of A. In case that such a set does not exist, then w > 0
almost everywhere on I, and we must have

+∞ =

∫
I

log+(1/w) dm = lim
c→0+

∫
I∩{w>c}

log+(1/w) dm

so that

ν(dj) <

∫
I∩{w>c}

log+(1/w) dm < +∞

for some small c > 0. By absolute continuity of the finite measure

log+(1/w)1I∩{w>c}dm

there must then exist a set B ⊂ I ∩ {w > c} for which we have precisely

ν(dj) =

∫
B

log+(1/w) dm

We pick such B and define

fn(x) = log+(1/w(x))1B(x), x ∈ dj .

Note that fn(x) ≤ log+(1/c) on dj . For definiteness, we can set fn to be equal to 0 on the finitely

many points outside of ∪2n

j=1dj . One way or the other, we have defined fn as a bounded function,
and we have ∫

dj

fn dm = ν(dj).

By summing over all the 2n intervals dj , we see that property (ii) in the statement of the lemma
is satisfied (since ν assigns no mass to the finitely many points outside the union of the open
intervals dj). Property (iii) is satisfied by the construction. Property (i) also holds. Indeed, if g
is the characteristic function of one of the dyadic intervals dj from some stage of our construction,
then the nesting property of the dyadic system and the additivity of ν ensure that

lim
n→∞

∫
T
gfn dm = ν(dj) =

∫
T
g dν.

The above equalities hold also for functions g which are finite linear combinations of characteristic
functions of dyadic intervals. Since such linear combinations can be used to uniformly approximate
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any continuous function on T, and since we have the uniform variation bound in (ii), we conclude
that the sequence {fn dm}n converges weak-star to ν. The proof is complete in the case that ν
assigns no mass to singletons.

In the contrary case we have that

ν =
∑
j

cjδxj
, cj > 0

is a countable linear combination of unit masses δxj
at the sequence of points {xj}j in T. Our

assumption implies that xj ̸∈ core(w) for all j. Thus each xj is the midpoint of an interval I which

can be chosen to have arbitrarily small length and for which we have
∫
I
log+(1/w) dm = +∞. We

can then proceed in an analogous way to the above, and produce at each stage n of the construction
a disjoint finite sequence of intervals {In,j}nj=1 each covering a different point xj for j = 1, . . . , n.
We then define a positive function fn which carries appropriate amount of mass on each of the
intervals In,j and satisfies the other needed properties. We skip laying out the straight-forward
details of this adaptation of the previous argument.

The general case follows by decomposing a measure ν into one measure which is a sum of point
masses and one measure which assigns no mass to singletons. □

4.2. Proof of Theorem A. We will need one more elementary lemma. It appears in [10] and
many other works.

Lemma 4.2. Assume that H is a Banach space of analytic functions in D which contains H∞

and with the property that for all functions h in H∞ the operator Mhf := hf is bounded on H.
Then the product uv of two cyclic bounded functions u, v ∈ H∞ is cyclic.

By cyclicity of u we mean, of course, that there exists a sequence of analytic polynomials
{pn}n≥1 such that pnu converges to 1 ∈ H in the norm of the space.

Proof. If u and v are two cyclic bounded functions, then for any polynomials p, q we have the
inequality

∥1− puv∥H ≤ ∥1− qv∥H + ∥Mv∥∥q − pu∥H ,

where ∥Mv∥ denotes the operator norm of the multiplication operator Mv, and ∥ · ∥H denotes
the norm in H. We use cyclicity of v to choose the polynomial q to make the first term on the
right arbitrarily small, and next we use cyclicity of u to choose p to make the second term on the
right arbitrarily small. It follows that the product uv of two bounded cyclic functions is a cyclic
function. □

Lemma 4.2 applies to any irreducible space P2(µ) of the form considered here, since indeed
the multiplication by any function in H∞ induces a bounded operator on these spaces. We skip
the straight-forward proof, which can for instance be based on simple analysis of the dilations
hr(z) := h(rz), r ∈ (0, 1), of the bounded function h. In particular, H∞ ⊂ P2(µ) whenever the
latter is irreducible. For future reference, note that as a subspace of L2(µ) (with µ as in (1.1)), each
function h ∈ H∞ ⊂ P2(µ) is defined also on µT := w dm, the part of µ living on the circle T. It is
not hard to see that the values of h with respect to µT coincide with the non-tangential boundary
function of h on T. If w is bounded, then the same conclusions hold also for any h ∈ H2 ⊂ P2(µ).

Proof of Theorem A. Note first that (i) ⇒ (ii) in Theorem A, since the condition ν
(
core(w)

)
> 0

implies that a factor in Sν satisfies the permanence property exhibited in Theorem B, and so Sν

cannot by cyclic. Thus it suffices for us to show the implication (ii) ⇒ (i). The norms induced
by measures µ satisfying (ExpDec) are largest if the measure µ has the form in (T1) defined in
Section 1, with β = 1. If Sν is cyclic in P2(µ) defined by any measure this form, then it is cyclic
in any P2(µ)-space considered in this article. Thus it suffices to prove the theorem in the case of
µ being of the form (T1) with β = 1, and any c > 0.

Let us then assume that ν
(
core(w)

)
= 0. The formula (1.5) shows that

Sν(z) =

N∏
i=1

Sν/N (z), z ∈ D
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for any positive integer N ≥ 1. Then by replacing ν by ν/N for N sufficiently large, and by
Lemma 4.2, we may assume that ν(T) < c/10. Let {fn}n≥1 be a sequence of positive bounded
functions given by Lemma 4.1 for which the measures {fn dm}n≥1 converge weak-star to 2ν, which
satisfy

∫
T fn dm = 2ν(T), and for which the bound (4.1) holds. Construct the outer functions

hn(z) := exp
(
Hfn(z)/2

)
, z ∈ D,

where

Hfn(z) :=

∫
T

x+ z

x− z
fn(x) dm(x), z ∈ D

is the usual Herglotz integral of fn. Then, since |Hfn(z)| ≤
4ν(T)
1−|z| , we obtain

|hn(z)| ≤ exp
( 2ν(T)
1− |z|

)
≤ exp

( c

5(1− |z|)

)
, z ∈ D,

and from property (iii) in Lemma 4.1 and basic properties of Herglotz integrals, we have the
non-tangential boundary value estimate

|hn(x)| = exp
(
fn(x)/2

)
≤
√
max[1, 1/w(x)]

for almost every x ∈ T with respect to m. It follows from these inequalities and the definition of
the norm in P2(µ) that the family {hn}n≥1 ⊂ H∞ forms a bounded subset of the Hilbert space
P2(µ). Moreover, by the weak-star convergence of {fn dm}n≥1 to 2ν we have that

lim
n→∞

hn(z) =
1

Sν(z)
, z ∈ D.

But this means that 1/Sν is a member of P2(µ), since we can identify it as a weak cluster point
of some subsequence of {hn}n≥1. Thus there must also exist a sequence of polynomials {pn}n
tending to 1/Sν in the norm of P2(µ). Consequently, since the multiplication operator MSν

is a
bounded on our space, we have that Sνpn → 1 in the norm of P2(µ). That is, Sν is cyclic. □

5. Moment functions, admissible sequences and spaces of Taylor series

This section initiates the second part of the article. In this part, we will apply our previous
results in P2(µ)-theory to Cauchy integrals, model spaces and the de Branges-Rovnyak spaces
H(b). In order to do so, we will need to analyze the moments of the functions G appearing in
(1.1). This entire section is concerned with this analysis.

5.1. Admissible sequences and their properties. If G is a function satisfying (ExpDec) and
(LogLogInt), then the sequence of moments of G, defined below in (5.3), will be shown to satisfy
the following basic properties.

Definition 5.1. (Admissible sequences) A decreasing sequence of positive numbers {Mn}n≥0

with
lim

n→∞
Mn = 0

will be called admissible if it satisfies the following three conditions:

(i) the sequence {logMn}n≥0 is eventually convex, in the sense that

2 logMn ≤ logMn+1 + logMn−1

for all sufficiently large n ≥ 0,
(ii) there exists d > 0 such that

Mn ≤ exp(−d
√
n)

for all sufficiently large n ≥ 0,
(iii) the summability condition ∑

n≥0

log(1/Mn)

1 + n2
< ∞

is satisfied.
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With later applications in mind, it will be useful to single out the following simple preservation
property of admissible sequences under taking powers.

Proposition 5.2. If M = {Mn}n≥0 is an admissible sequence, then so is

Mp := {Mp
n}n≥0,

for any p > 0.

The proposition follows immediately from Definition 5.1

5.2. Legendre envelopes. Roughly speaking, admissible sequences {Mn}n≥0 are in a corre-
spondence with moments of functions G satisfying (ExpDec) and (LogLogInt), and we shall now
proceed to make this statement more precise. In order to do so, we will need to recall some basic
concepts from convex analysis. In particular we will use the notion of Legendre envelopes and
their properties. In parts of our exposition we will follow Beurling in [4] and Havin-Jöricke in [15],
and we will refer to those works for most of the proofs of the following claims.

Let m(x) be a positive and continuous function defined for x > 0, which is decreasing and
satisfies

lim
x→0+

m(x) = +∞.

In our application, m will be of the form m(x) = log 1/G(x) (for small x). The lower Legendre
envelope m∗ is defined as

(5.1) m∗(x) := inf
y>0

m(y) + xy, x > 0.

Being an infimum of concave (actually affine) and increasing functions, m∗ is itself concave and
increasing, and it is easy to see that

lim
x→+∞

m∗(x) = +∞.

Remark 5.3. Assume that we modify the function m above for x larger than 1, so that we end
up with a different function m̃ which satisfies m̃(x) = m(x) for x < 1, but the values of the two
functions might differ for x ≥ 1. Then it is not hard to see from the definition in (5.1) that
m̃∗(x) = m∗(x) for all sufficiently large x. Indeed, if y ≥ 1, then we have by positivity of m that

m(y) + xy ≥ x ≥ m(1/2) + x/2,

the second inequality holding if x is sufficiently large. For such x, the candidate y = 1/2 is always
better than any candidate y ≥ 1 in the infimum in (5.1), and our claim follows.

In [4, Lemma 1], Beurling proves the following statement which will be used below.

Proposition 5.4. Let m(x) be a positive, continuous and decreasing function of x > 0 which
satisfies limx→0+ m(x) = +∞. The following two statements are equivalent:

(i) there exists a δ > 0 such that ∫ δ

0

logm(x) dx < ∞,

(ii) we have ∫ ∞

1

m∗(x)

1 + x2
dx < ∞.

We refer the reader to [4] for a proof of Proposition 5.4.
Let k(x) be a positive concave function of x > 0 which is increasing and satisfies

lim
x→+∞

k(x) = +∞.

We will consider its upper Legendre envelope defined as

(5.2) k∗(x) := sup
y>0

k(y)− xy.
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Then it is easy to see that k∗ is a convex and decreasing function, and

lim
x→0+

k∗(x) = +∞.

We have the following inversion formula, which is well-known (see [15, p. 224-225]).

Lemma 5.5. Let k be a positive concave function of x > 0 which is increasing and satisfies
limx→∞ k(x) = +∞. Then

(k∗)∗(x) = k(x).

5.3. A characterization of admissible sequences. We will be interested in the sequence
{Mn}n≥0 of moments of the parts of our measures µ living on D:

Mn = Mn(G) :=

∫
D
G(1− |z|)|z|2ndA(z)

= 2

∫ 1

0

G(1− r)r2n+1dr.(5.3)

We define the moment function of G by

(5.4) PG(x) :=

∫ 1

0

G(1− r)rx dx, x > 0.

The next lemma gives an estimate on PG. We skip the proof, which is essentially the same as
the one given in [15, p. 229] (see also the proof of [24, Lemma 4.3]).

Lemma 5.6. Let G(x), x ∈ [0, 1], be an increasing continuous function satisfying G(0) = 0, and
put

(5.5) m(x) :=

{
log 1/G(x), x ∈ (0, 1]

log 1/G(1), x > 1.

Then, for sufficiently large x > 0, we have the estimates

exp
(
−m∗(2x)

)
4x

≤ PG(x) ≤ exp
(
−m∗(x)

)
,

where PG is the moment function of G defined in (5.4).

Lemma 5.7. For c > 0 and β > 0, let {Mn(β, c)}n≥0 be the sequence of moments given by

Mn(β, c) :=

∫
D
exp

(
− c(1− |z|)−β

)
|z|2n dA(z)

= 2

∫ 1

0

exp
(
− c(1− r)−β

)
r2n+1 dr, n ≥ 0.(5.6)

Put

β̃ :=
β

β + 1
.

For sufficiently large positive n, we have the estimates

(5.7) exp
(
− 2dnβ̃

)
≤ Mn(β, c) ≤ exp

(
− dnβ̃

)
where d = d(β, c) is comparable to c1/(β+1) if β remains fixed.

Proof. In the notation of Lemma 5.6, and with

G(x) = exp
(
− c

xβ

)
, x ∈ (0, 1)

we have
m(x) =

c

xβ
, x ∈ (0, 1)

and we need to compute the corresponding Legendre envelope m∗ defined in (5.1). Having fixed
some number x > 0, we use elementary calculus to show that

inf
y>0

c

yβ
+ xy
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is attained at the point

y∗ :=

(
cβ

x

) 1
β+1

from which it follows that

m∗(x) = cy−β
∗ + xy∗

= c1/(β+1)(β−β/(β+1) + β1/(β+1))xβ̂

:= d(β, c)xβ̂ .

Since

Mn(β, c) = 2PG(2n+ 1)

we obtain from Lemma 5.6 the inequalities

(5.8) 2 exp
(
− d(β, c)(4n+ 2)β̃ − log(8n+ 4)

)
≤ Mn(β, c) ≤ 2 exp

(
− d(β, c)(2n+ 1)β̃

)
which hold for all sufficiently large n. Our result follows easily from this. □

We can now prove the main result of the section, which connects our considered class of functions
G with the admissible sequences appearing in Definition 5.1.

Proposition 5.8. If G satisfies (ExpDec) and (LogLogInt), then {Mn}n≥0 defined by

(5.9) Mn := 2

∫ 1

0

G(1− r)r2n+1 dr

is an admissible sequence.
Conversely, if {Mn}n≥0 is an admissible sequence, then there exists a continuous and increasing

function G satisfying (ExpDec), (LogLogInt), G(0) = 0, and for which the inequality

PG(2n+ 1) ≤ Mn

holds for all sufficiently large n ≥ 0.

Proof. We start by proving that the sequence in (5.9) is admissible by verifying the three conditions
in Definition 5.1. By the Cauchy-Schwarz inequality, we have

Mn = 2

∫ 1

0

G(1− r)r(n−1)+1/2r(n+1)+1/2 dr

≤
√
Mn−1

√
Mn+1

Thus {logMn}n≥0 is a convex sequence. The inequality Mn ≤ exp(−c
√
n) for some c > 0 and all

sufficiently large n ≥ 0 follows readily from (ExpDec) and an application of the upper estimate

Lemma 5.7 with β = 1 (and consequently β̃ = 1/2). Let m be as in Lemma 5.6. By the lower
estimate in that lemma, we have∑

n≥0

log 1/Mn

1 + n2
=
∑
n≥0

− log 2− logPG(2n+ 1)

1 + n2

≤
∑
n≥0

− log 2 +m∗(4n+ 2) + log(8n+ 4)

1 + n2
.

The assumption that G satisfies (LogLogInt) implies that
∫ 1

0
logm(x) dx < ∞, and so from Propo-

sition 5.4 we deduce that the last sum above is convergent. Consequently, {Mn}n≥0 is an admissible
sequence.

Conversely, assume that {Mn}n≥0 is an admissible sequence. Since the sequence tends to zero,
we may without loss of generality assume that M0 < 1. From property (i) in Definition 5.1 we
obtain the inequality

log 1/Mn+1 − log 1/Mn ≤ log 1/Mn − log 1/Mn−1, n ≥ 0.
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This means that the slopes of the line segments between each consecutive pair of points in the
sequence

(5.10) (2n+ 1, log 1/Mn), n ≥ 0

are decreasing, which means that if we define the function k(x), x > 0, as the piecewise linear
interpolant of the data (5.10), then k is concave, continuous, positive and increasing, and satisfies

k(2n+ 1) = log 1/Mn, n ≥ 0.

It also satisfies limx→∞ k(x) = +∞, and property (iii) in Definition 5.1 easily implies that

(5.11)

∫ ∞

1

k(x)

1 + x2
dx < ∞.

Let k∗ be the upper Legendre envelope of k defined in (5.2), set

(5.12) G(x) := exp
(
− k∗(x)

)
, x ∈ (0, 1],

and G(0) = 0. Then G is a continuous and increasing function. Define PG as in (5.4). By
Remark 5.3, (5.12), inversion formula in Lemma 5.5 and Lemma 5.6, we have the estimate

PG(x) ≤ exp
(
− k(x)

)
for all sufficiently large x. Consequently,

PG(2n+ 1) ≤ Mn

if n is large, since k interpolates the data (5.10). Proposition 5.4, Lemma 5.5 and (5.11) imply
that ∫ 1

0

log log 1/G(x) dx =

∫ 1

0

log k∗(x) dx < ∞.

Thus G satisfies (LogLogInt). It remains to check that G also satisfies (ExpDec). Note that
property (ii) in Definition 5.1 of the admissible sequence {Mn}n≥0 implies easily that k satisfies
a lower bound of the form

k(x) ≥ d
√
x, x ≥ 0,

for some constant d > 0. But then, by (5.2), we have

k∗(x) = sup
y≥0

k(y)− xy

≥ sup
y>0

d
√
y − xy

=
d2

4x
.

The last equality can be derived by elementary calculus techniques. Consequently

lim inf
x→0+

x log 1/G(x) ≥ d2

4
> 0,

and so G satisfies (ExpDec). The proof is complete. □

5.4. Some auxiliary spaces of Taylor series. If f : D → C is an analytic function and

(5.13) dµD(z) = G(1− |z|)dA(z)

then we have the norm equality

(5.14) ∥f∥2µD
=

∫
D
|f(z)|2dµD(z) =

∑
n≥0

Mn(G)|fn|2

where {fn}n≥0 is the sequence of Taylor coefficients of f , and M = {Mn(G)}n≥0 is given by (5.3).
The above equality gives us an isometric isomorphism between P2(µD) and a space of Taylor series.
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For a decreasing sequence M = {Mn}n≥0 of positive numbers we define H2(M) to be the
Hilbert space of analytic functions in D consisting of f(z) =

∑
n≥0 fnz

n which satisfy

(5.15) ∥f∥2H2(M) :=
∑
n≥0

Mn|fn|2 < ∞.

In our development, the sequences M will be the admissible sequences studied in Section 5. Such
sequences have the property that

lim
n→∞

M1/n
n = 1,

a condition which ensures that the spaces H2(M), and their duals, are genuine spaces of analytic
functions on D. The dual space H∗

2 (M) is to consist of power series which satisfy

(5.16) ∥f∥2H∗
2 (M) :=

∑
n≥0

|fn|2

Mn
< ∞.

Since M = {Mn}n≥0 is assumed to be decreasing, the space H∗
2 (M) is contained in the Hardy

space H2. In fact, if M is an admissible sequence, then H∗
2 (M) consists of functions satisfying the

condition (RSD) of Section 1. The duality between H2(M) and H∗
2 (M) is realized by the usual

Cauchy pairing

(5.17)
〈
f, g
〉
:= lim

r→1−

∑
n≥0

r2nfngn =

∫
T
fg dm =

〈
f, g
〉
L2

where the sequential definition above makes sense whenever f ∈ H2(M), g ∈ H∗
2 (M), and the

integral definition holds only in special cases, for instance when f, g ∈ H2. An application of the
Cauchy-Schwarz inequality to the limit in (5.17) shows that

|
〈
f, g
〉
| ≤ ∥f∥H2(M)∥g∥H∗

2 (M).

We introduce also the space H∗
1 (M) which consists of power series f(z) =

∑
n≥0 fnz

n satisfying

(5.18) ∥f∥H∗
1 (M) := sup

n≥0

|fn|
Mn

< ∞.

Recall from Proposition 5.2 that the family of admissible sequences introduced in Definition 5.1
is invariant under taking powers. For this reason, the spaces H∗

2 (M) and H∗
1 (M) which appear in

our study are very similar.

Lemma 5.9. Let M = {Mn}n≥0 be an admissible sequence, and consider the sequences

Mp := {Mp
n}n≥0.

For p > 1/2, we have the continuous embeddings

H∗
1 (M

p) ⊂ H∗
2 (M) ⊂ H∗

1 (M
1/2).

Proof. If f ∈ H∗
2 (M), then for any n ≥ 0 we have that

|fn|2

Mn
≤ ∥f∥2H∗

2 (M),

so clearly f ∈ H∗
1 (M

1/2). If f ∈ H∗
1 (M

p) for some p > 1/2, then we may use that M satisfies
property (ii) of admissible sequences in Definition 5.1 to obtain∑

n≥0

|fn|2

Mn
≤ ∥f∥2H∗

1 (M
p)

∑
n≥0

M2p−1
n

≤
∑
n≥0

exp
(
− d(2p− 1)

√
n
)

< ∞.

Thus f ∈ H∗
2 (M). □

The following corollary will be used several times below.
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Corollary 5.10. If an analytic function f in D satisfies the condition (RSD), then there exists
c′ > 0 and a measure

dµD(z) = exp
(
− c′

(1− |z|)

)
dA(z) = G(1− |z|)dA(z)

with sequence of moments M = {Mn(G)}n≥0 such that f ∈ H∗
2 (M).

Proof. The condition (RSD) and Lemma 5.9 imply that f ∈ H∗
2 (M̃), where M̃n = exp(−c0

√
n)

for some positive constant c0. Now Lemma 5.7, with β = 1, shows that c′ > 0 can be chosen so

that Mn(G) = M(β, c′) ≥ M̃n for sufficiently large n. Then f ∈ H∗
2 (M). □

We end the section with a few words about operators acting on the introduced class of spaces.
From their definition, and in particular from the assumption on M being decreasing, it is not hard
to see that the spaces H2(M) are invariant under the multiplication operator Mz, and that this
operator is a contraction. Then Von Neumann’s inequality ([1, p. 159]) or the Sz.-Nagy Foias H∞-
functional calculus ([29, Chapter 3]) shows that in fact every function h ∈ H∞ defines a bounded
multiplication operator Mh : H2(M) → H2(M). The adjoint operator M∗

h : H∗
2 (M) → H∗

2 (M) is

easily indentified with the usual Toeplitz operator Th with the co-analytic symbol h, i.e., Thf is

the orthogonal projection to the Hardy space H2 of the function hf ∈ L2(T).
For later reference, we record these observations in a proposition.

Proposition 5.11. Let M = {Mn}n≥0 be an admissible sequence.

(i) The space H2(M) is invariant for the analytic multiplication operators

Mhf = h(z)f(z)hf, f ∈ H2(M),

with symbols h ∈ H∞.
(ii) The space H∗

2 (M) is invariant for the co-analytic Toeplitz operators

Thf = P+hf, f ∈ H∗
2 (M)

with symbols h ∈ H∞.

Corollary 5.12. If an analytic function f : D → C satisfies the condition (RSD), then so does
Thf for any h ∈ H∞.

Proof. We use Corollary 5.10 and Proposition 5.11 to see that the function Thf is contained in a

space H∗
2 (M), where M is admissible. Lemma 5.9 shows that Thf ∈ H∗

1 (
√
M), so Thf satisfies

(RSD). □

6. Existence in H(b) of functions with rapid spectral decay

This section deals with proving Theorem D. In the proof, we will need a similar result in the
context of model spaces, which we establish first. Next, we present some background theory of
H(b)-spaces which will be needed in the proof of Theorem D, and also in the proof of Theorem E
given in the next section.

6.1. Corresponding result in model spaces. The following Proposition 6.1 needed in the proof
of TheoremD is known, and follows for instance from the work of Beurling in [3], or from a result of
El-Fallah, Kellay and Seip in [10]. The mentioned results are much stronger than Proposition 6.1.
Because the result is important for our further purposes, we shall use the estimates from Section
5 to give a simple proof of our version of the result.

Proposition 6.1. If θ is a singular inner function, then the model space Kθ contains no non-zero
function f(z) =

∑
n≥0 fnz

n which satisfies (RSD).

Proof. We will show that any f ∈ Kθ which satisfies (RSD) satisfies also f(0) = f0 = 0. Since Kθ

is invariant for the backward shift

Lf(z) :=
f(z)− f(0)

z
, z ∈ D,
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and by Corollary 5.12 the function Lf = Tzf satisfies (RSD), the same argument will show that
fn = Lnf(0) = 0 for n ≥ 0. Thus f ≡ 0 will follow.

We apply Corollary 5.10 to f and obtain a measure µD with moment sequence M such that
f ∈ H∗

2 (M). The measure µD is of the form (T1) (see Section 1) for β = 1 and w ≡ 0. By
Theorem A, the singular inner function θ is trivially cyclic in P2(µD), since core(w) = core(0) = ∅.
Thus there exists a sequence of analytic polynomials {pn}n≥0 such that θpn → 1 in the norm of
P2(µ) = H2(M). Using the duality pairing (5.17) and the membership of f in H∗

2 (M) ∩Kθ, the
following computation is justified:

f(0) =
〈
1, f
〉

= lim
n→∞

〈
θpn, f

〉
= lim

n→∞

∫
T
θpnf dm

= 0.

The last equality holds due to f being a member of Kθ = (θH2)⊥. Thus f(0) = 0, and the proof
is complete by the initial remarks. □

6.2. Some H(b)-theory. The following description of H(b)-spaces is very convenient in connec-
tion with various functional-analytic arguments. It has been introduced in [2], and was later
used in [21] and [23], to prove approximation results in classes of H(b)-spaces. We will employ
it in a similar way below. Recall that the symbol P+ denotes the orthogonal projection operator
P+ : L2(T) → H2, and L2(E) denotes the subspace of those g ∈ L2(T) which live only on the
measurable subset E ⊂ T.

Proposition 6.2. Let b be an extreme point of the unit ball of H∞,

(6.1) ∆b(x) =
√
1− |b(x)|2, x ∈ T,

and E be the carrier set of ∆b:

E = {x ∈ T : ∆b(x) > 0}.
Then f ∈ H2 is a member of H(b) if and only if the equation

(6.2) P+bf = −P+∆bg

has a solution g ∈ L2(E). The solution is unique, and the map J : H(b) → H2⊕L2(E) defined by

Jf = (f, g),

is an isometry. Moreover,

(6.3) J(H(b))⊥ =
{
(bh,∆bh) : h ∈ H2

}
.

Next comes a very useful corollary which is well-known and can be proved by other means (see
[11], [12] for other derivations).

Corollary 6.3. Let E and ∆b be as in Proposition 6.2. For any s ∈ L2(E), the function

f = P+∆bs

is a member of H(b) and, in the notation of Proposition 6.2, we have

Jf = (f,−bs).

Moreover, if b is extreme and s is non-zero, then f is non-zero.

Proof. We compute
P+bf = P+bP+∆bs = P+b∆bs = P+∆bbs,

and so (6.2) holds for the pair (f, g) := (P+∆bs,−bs). If b is extreme, then log∆b ̸∈ L1(T), and
it follows readily that also log(∆b|s|) ̸∈ L1(T). A function h ∈ kerP+ is conjugate-analytic, and
so log |h| ∈ L1(T) if h ̸= 0. So ∆bs ̸∈ kerP+ if s is non-zero, and it follows that f is non-zero. □
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Corollary 6.4. The Toeplitz operator Tb acts boundedly on H(b). If f ∈ H(b) and Jf = (f, g),
then

Tbf = (Tbf, bg).

Proof. Again, we only need to verify that (6.2) holds for the given pairs. This follows easily by
applying the operator Tb to both sides of the equation (6.2) and computing as in the proof of
Corollary 6.3. □

6.3. Main tool in the proof of Theorem D: residuals. We will now need to introduce the
notion of residual sets.

Definition 6.5. (Residual sets of weights) Let w ∈ L1(T) and consider the carrier set

E = {x ∈ T : w(x) > 0}.

We define res(w) to be the set

res(w) = E \ core(w),
where core(w) is the set appearing in Definition 1.1.

Since E might only be defined up to a set of m-measure zero, the same is true for the residual
res(w) of any weight w. This will not cause us any problems.

We have introduced the residuals because of their crucial role in the following special case of
[24, Theorem A].

Lemma 6.6. Assume that w ∈ L1(T) is a weight for which res(w) has positive m-measure. Let
wr = w|res(w) be the restriction of the weight w to the set res(w). Then we have the containment

L2(wrdm) ⊂ P2(µ)

whenever µ is of the form (1.1) with G satisfying (ExpDec).

6.4. Proof of Theorem D. In Theorem D, it is obvious that (ii) ⇒ (i). We can thus prove the
theorem by showing validity of the implications (i) ⇒ (iii) and (iii) ⇒ (ii).

Let us first show that (i) ⇒ (iii), and so we assume that f(z) =
∑

n≥0 fnz
n ∈ H(b) is non-zero

and that it satisfies (RSD). We may assume that b does not vanish at any point in D, else (iii)
certainly holds. Similarly to as it was done in the proof of Proposition 6.1, we use Corollary 5.10
to obtain a measure

dµ = dµD + dµT(6.4)

= exp
(
− c′

(1− |z|)

)
dA(z) + ∆b dm,

and a sequence M such that the identity map between P2(µD) and H2(M) is an isometry, and
f ∈ H∗

2 (M). By Proposition 5.11, the space H∗
2 (M) is invariant under Toeplitz operators with

co-analytic symbols, and consequently we also have Tbf ∈ H∗
2 (M). By Corollary 6.4 and (6.2) we

have Tbf = P+bf ∈ H(b) ∩H∗
2 (M) and

(6.5) Tbf = P+∆bg

for some g ∈ L2(E). The kernel of the operator Tb is the model space KIb , where Ib is the inner
factor of b. Since b does not vanish in D, it follows that Ib is a purely singular inner function.
Every function in H∗

2 (M) satisfies (RSD), so Proposition 6.1 implies that KIb ∩ H∗
2 (M) = {0}.

Consequently f ̸∈ KIb , so Tbf ̸= 0, and ∆bg ̸= 0 by (6.5). If

Tbf(z) =
∑
n≥0

cnz
n

is the Taylor expansion of Tbf(z), then a consequence of the membership Tbf ∈ H∗
2 (M) is that

the function

F (z) :=
∑
n≥0

cn
Mn

zn, z ∈ D
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is a member of H2(M). The function F lives on D, the function g lives on T, and hence F − g
defines a function on D. The condition F ∈ H2(M) means simply that F is square-integrable with
respect to the part µD of µ in (6.4) which lives on D. The containment g ∈ L2(∆bdm) = L2(µT)
is ensured by the boundedness of ∆b and the containment g ∈ L2(E). Thus F − g ∈ L2(µ).
The representation (6.5) tells us that the positive Fourier coefficients {cn}n≥0 of Tbf and of
∆bg coincide. Our definitions then imply that the function F − g is orthogonal to the analytic
polynomials in L2(µ). Since ∆bg ̸= 0, the function g is a non-zero element of L2(µT). The
conclusion is that there exists an element (namely F − g) inside L2(µ) which is orthogonal to
P2(µ) and which does not vanish identically on the circle T. If there existed no interval on which
log∆b was integrable, then core(∆b) = ∅, and so Lemma 6.6 would imply that the entire space
L2(∆bdm) is contained in P2(µ). Clearly that would be a contradiction to F − g being orthogonal
to P2(µ). Thus such an interval exists, and we have proved that (i) ⇒ (iii).

The implication (iii) ⇒ (ii) is easier. Let M = {Mn}n≥0 be an admissible sequence. We
must show that H(b) contains a function in H∗

1 (M). If b vanishes at some point of D, then the
implication is trivial. Assume therefore that log∆b is integrable on some (say, open) interval I
which is not all of T, and let w = ∆2

b |I be the restriction of ∆2
b to the interval I. By Proposi-

tion 5.2 and Proposition 5.8 there exists a function G which satisfies (ExpDec), (LogLogInt), with
corresponding moment sequence

M̃ = {M̃n}n≥0 = {Mn(G)}n≥0

satisfying

M̃n ≤ M2
n

for large n. If
dµ(z) = G(1− |z|)dA(z) + w(z)dm(z),

then the space P2(µ) is irreducible by Theorem 1.3, since core(w) coincides with I, which is a
carrier of w. By irreducibility we have that L2(w dm) ̸⊂ P2(µ). So there must exist a non-zero
element F − g ∈ L2(µ), with F being an analytic function on D and g living on I ⊂ T, which is
orthogonal to P2(µ) in L2(µ). We can’t have g ≡ 0, for then the Taylor coefficients of F would
all vanish by the orthogonality to analytic monomials, and consequently F − g would reduce to
the zero element. The orthogonality means that

FnM̃n = (wg)n, n ≥ 0

where {Fn}n≥0 are the Taylor coefficients of F and (wg)n are the non-negative Fourier coefficients
of wg. For large n, we have the estimate

|(wg)n|2 = |FnM̃n|2

≤ M̃n

∑
m≥0

|Fm|2M̃m

= M̃n∥F∥2µD

≤ M2
n∥F∥2µD

.

Thus P+wg is a member of H∗
1 (M). Since g lives on I and g∆b ∈ L2(I), we have by Corollary 6.3

that P+wg = P+∆b∆bg ∈ H(b). This function is non-zero since log(w|g|) ̸∈ L1(T) by the choice
of I ̸= T. Thus (iii) ⇒ (ii), and we have completed our proof of Theorem D.

7. Density in H(b) of functions with rapid spectral decay

The main result of [23] characterizes the density of the functions in H(b) which have Taylor
series f(z) =

∑
n≥0 fnz

n satisfying |fn| = O(1/nk), for positive k. The characterization is in

terms of the structure of Mz-invariant subspaces of P2(µ) with µ of form (1.1) and G(t) = tk,
k ≥ 0. The proofs in [23] in fact carry over more-or-less verbatim from the case considered there
to many other function classes defined by their spectral size, with the family of functions defined
by conditions such as (1.13) being no exception. Thus, in fact, Theorem E is more or less a direct
consequence of Theorem 1.3, Theorem A and Theorem B. For reasons of completeness of the
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present work, we outline an argument which is in parts new, leads to a proof of Theorem E, but
also gives additional bits of information regarding which functions in H(b) lie outside of the closure
of functions satisfying spectral decay properties as in (RSD).

As before, ∆b(x) =
√
1− |b(x)| for x ∈ T, and we let

b = BSνb0

be the inner-outer factorization of b, with B a Blaschke product, Sν a singular inner function, and
b0 an outer function. We denote by Ib = BSν the inner factor of b.

Lemma 7.1. Let w ∈ L1(T) be non-negative, and assume that for some g ∈ L2(w dm) the function
P+wg satisfies (RSD). Then gw vanishes on res(w).

Proof. We use Corollary 5.10 to obtain a measure µ as in (T1) of Section 1, and with the parameters
β = 1 and c > 0 chosen so that if M = {Mn}n≥0 is the sequence of moments corresponding to
µD, then P+wg ∈ H∗

2 (M). Let h be a bounded function living on res(w), and {pn}n≥0 be a
sequence of analytic polynomials which converges to h in the norm of P2(µ). This is possible by
Lemma 6.6. In particular, this convergence implies that pn → 0 in P2(µD), or in other words,
pn → 0 in H2(M). Simultaneously, we have that pn → h in L2(w dm). Using the duality pairing
(5.17), we obtain

0 =
〈
0, P+wg

〉
= lim

n→∞

〈
pn, P+wg

〉
= lim

n→∞

〈
pn, P+wg

〉
L2

= lim
n→∞

〈
pn, wg

〉
L2

=

∫
T
hg w dm.

Since h is an arbitrary bounded function living on res(w), it follows that gw ≡ 0 on res(w). □

Proposition 7.2. Assume that the set res(∆b) has positive m-measure, and let s ∈ L2(T) be a
non-zero function which vanishes outside of res(∆b). Then the non-zero function

f = P+∆bs ∈ H(b)

lies outside of the norm-closure in H(b) of functions satisfying (RSD).

Proof. Seeking a contradiction, assume that {hn}n is a sequence of functions in H(b) which satisfy
(RSD) and which converge in the norm of H(b) to the given f . In the notation of Proposition 6.2,
we consider Jhn = (hn, kn) ∈ H2 ⊕ L2(E) and Jf = (f, g) ∈ H2 ⊕ L2(E), where g = −bs
according to Corollary 6.3. By Corollary 6.4, Tbhn converges to Tbf in the norm of H(b), and

since the embedding J of Proposition 6.2 is an isometry, Corollary 6.4 moreover implies that bkn
converges to bg = −b2s in L2(T). In particular, this implies that kn cannot all simultaneously
vanish on res(∆b), since s lives only on that set. But Tbhn satisfies (RSD) (since hn does), and

Tbhn = P+bhn = P+∆bbkn by Corollary 6.4. Thus by Lemma 7.1, the functions ∆bbkn must

vanish on res(∆b), and consequently kn must vanish on res(∆b), since b∆b is non-zero m-almost
everywhere on that set. This is the desired contradiction. □

We have now proved that it is necessary for core(∆b) to be a carrier for ∆b if functions satisfying
(RSD) are to be dense in H(b). In the next proposition, we assume that core(∆b) is a carrier for
∆b, and show that if Sν is the singular inner factor of b and ν places some portion of its mass
outside of the core of ∆b, then again functions satisfying (RSD) are not dense in H(b). And again,
we do it by exhibiting explicit functions in H(b) which cannot be approximated in this way.

Proposition 7.3. Assume that core(∆b) is a carrier for ∆b and that

ν
(
T \ core(∆b)

)
> 0,
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where Sν is the singular inner factor of b. Decompose the measure ν as

ν = νr + νc,

where νr is the restriction of ν to the set T \ core(∆b), and νc is the restriction of ν to the set
core(∆b). Then all functions in the subspace

(b/Sνr )KSνr
= BSνcb0KSνr

⊂ H(b)

are orthogonal in H(b) to functions satisfying (RSD), KSνr
being the model space generated by the

singular inner function Sνr .

Proof. Take a function f = BSνcb0s, where s ∈ KSνr
, and h satisfying (RSD). In the notation of

Proposition 6.2, a computation shows that Jf = (f, g), where

g = ∆bSνr
s.

Let P2(µ) andH2(M) = P2(µD) be as in the proof of Lemma 7.1, with w = ∆b and the sequenceM
being chosen so that h ∈ H∗

2 (M). This time the space P2(µ) is irreducible, and by Theorem A the
singular inner function Sνr

is cyclic in P2(µ). Hence there exists a sequence of analytic polynomials
{pn}n such that Sνrpn converges to the function s ∈ H2 in the norm of P2(µ), and in particular
in the norm of H2(M). Multiplying this sequence by BSνcb0, it follows from Proposition 5.11 that
bpn converges to f in H2(M). Simultaneously, the P2(µ)-convergence implies that Sνr

pn converge
to s in L2(∆bdm), and since Sνr

is unimodular on T, in fact we have that pn converge to Sνr
s

in L2(∆bdm). Let Jh = (h, k) be the corresponding pair for h. We can use the above claims to
compute

〈
h, f

〉
L2 +

〈
k, g
〉
L2 =

〈
h, f

〉
+
〈
k,∆bSνr

s
〉
L2

= lim
n→∞

〈
h, bpn

〉
+
〈
k,∆bpn

〉
L2

= lim
n→∞

〈
h, bpn

〉
L2 +

〈
k,∆bpn

〉
L2

= lim
n→∞

〈
P+(bh+∆bk), pn

〉
L2

= lim
n→∞

〈
0, pn

〉
L2

= 0.

In the last step we used condition (6.2) for the pair (h, k). Since the embedding J in Proposition 6.2
is an isometry, it follows that f is orthogonal to h in H(b). □

Proof of Theorem E. We see from Proposition 7.2 and Proposition 7.3 above that condition (iii)
in Theorem E is necessary in order for (i) to hold. Since (ii) implies (i), it suffices thus to show
that (iii) implies (ii). The argument is essentially same as the one appearing in [23] and [21], we
include it only for completeness.

Just as in the proof of Theorem D, given an admissible sequence M = {Mn}n≥0 we use
Proposition 5.2 and Proposition 5.8 to obtain G satisfying (ExpDec), (LogLogInt), with moment

sequence M̃ = {M̃n}n≥0 satisfying M̃n ≤ M2
n for large n. We must show that H(b) ∩H∗

1 (M) is
dense in H(b). By Lemma 5.9 it will suffice to show that H∗

2 (M
2) ∩H(b) is dense in H(b).

The space P2(µ) constructed from the measure

dµ(z) = G(1− |z|)dA(z) + ∆2
b(z)dm(z)

is irreducible by Theorem 1.3. Let us assume that f ∈ H(b) is orthogonal to H∗
2 (M

2)∩H(b). We
will show that f = 0, which will prove Theorem E. Because the mapping J in Proposition 6.2 is
an isometry, it follows that Jf is orthogonal to J(H∗

2 (M
2)∩H(b)). Note that J(H∗

2 (M
2)∩H(b)) is

a subset of H∗
2 (M

2)⊕L2(E), and under the duality pairing (5.17) between H2(M
2) and H∗

2 (M
2),

we have

(7.1) J(H∗
2 (M

2) ∩H(b)) = ∩h∈H2 ker lh,
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where lh is the functional on H∗
2 (M

2)⊕ L2(E) which acts by the formula

lh(f, g) :=
〈
f, bh

〉
+
〈
g,∆bh

〉
L2 .

This follows readily from Proposition 6.2 (see, for instance, the argument in [23]). The fact that Jf
annihilates J(H∗

2 (M
2) ∩H(b)) and that (7.1) holds implies that Jf is contained in the weak-star

closure of the linear manifold {lh}H2 ⊆ H2(M
2)⊕L2(E). Since the pairing between H2(M

2) and
H∗

2 (M
2) is reflexive and {lh}h∈H2 is a convex set, basic functional analysis says that, in fact, Jf

is contained in the norm-closure of {lh}h∈H2 . Thus there exists a sequence {hk}k≥1 with hk ∈ H2

such that

(7.2) (bhk,∆bhk) → Jf := (f, g)

in the norm of H2(M
2)⊕ L2(E). Multiply the second coordinate by b to obtain

(7.3) (bhk,∆bbhk) → (f, bg).

But the inequalities M̃n ≤ M2
n imply that bhk converges to f also in the space P2(µD), and so in

fact (7.3) tells us that {bhk}n is a Cauchy sequence in P2(µ), to which Theorem B applies. The
critical conclusion is that bhk → f in the irreducible P2(µ). If Ib is the inner factor of b, then
Theorem B implies that f/Ib ∈ H2, and by the irreducibility of P2(µ) the sequence bhk on T must
converge to the boundary function of f on T. Thus g = ∆bf/b by (7.3), and Jf = (f,∆bf/b). By
Proposition 6.2 we get that

(7.4) 0 = P+(bf +∆bg) = P+(bf +∆2
bf/b) = P+(|b|2f/b+∆2

bf/b) = P+(f/b).

From the above computation we infer that, in terms of boundary values, we have f/b = bf +
∆bg ∈ L2(T), and consequently f/b has square-integrable boundary values. Since f/Ib ∈ H2, it
follows from the classical Smirnov maximum principle that f/b ∈ H2. Then f/b is an analytic
function which projects to 0 under P+, which implies that f/b = 0, and consequently f = 0. □

8. Proof of Theorem C

A proof of Theorem C relies on a judicious application of Lemma 7.1.

Proof of Theorem C. If Cν satisfies (RSD), then the function f(z) =
∑

n≥0 νnz
n, z ∈ T, is cer-

tainly smooth on T and it has an analytic extension to D. Since the Cauchy transform of the
measure dν − f dm vanishes in D, this measure must be absolutely continuous with respect to m
by the classical theorem of brothers Riesz. Hence dν is also absolutely continuous. Let g ∈ L1(T)
be its Radon-Nikodym derivative, so that dν = g dm. Set f = Cν = Cg, which by our assumption
is a function satisfying (RSD). Unfortunately, we cannot directly apply Lemma 7.1 since we do
not necessarily have that g ∈ L2(T). We must take care of this slight inconvenience to prove the
theorem.

Corollary 5.12 says that Thf satisfies (RSD), where Th is any co-analytic Toeplitz operator with
bounded symbol h ∈ H∞. Moreover, Thf has the representation

Thf(z) = Chg(z), z ∈ D.

The above formula can be derived by first showing through simple algebraic manipulations that
it holds for h(z) := z, then for analytic monomials by iteration, and thus for analytic polynomials
by linearity. Finally, fix a uniformly bounded sequence of analytic polynomials {pn}n≥1 which
converges to h pointwise m-almost everywhere on T (the polynomials pn could be taken to be the
Cesàro means of the partial sums of the Taylor series of h). For such a sequence we readily see
from the dominated convergence theorem that

Thf(z) = lim
n→∞

Tpn
f(z) = lim

n→∞
Cpng(z) = Chg(z), z ∈ D.

Since g ∈ L1(T), in particular we have that log+ |g| ∈ L1(T), and this means that an outer function
h ∈ H∞ exists which satisfies the boundary value equation

|h(x)| = min
(
1, 1/|g(x)|

)
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for m-almost every x ∈ T. Set also

w(x) = min
(
1, |g(x)|

)
.

Now, we can write

hg = h
g

w
w = uw

with

u := h
g

w
.

It is easily checked that u satisfies |u(x)| = 1 for m-almost every x for which |g(x)| > 0. Then

Thf(z) = Chg(z) = P+uw(z), z ∈ D

and Lemma 7.1 can be applied to conclude that uw vanishes on res(w). Since u is unimodular, it
follows that in fact w vanishes on res(w), and consequently the set

{x ∈ T : w(x) > 0} = {x ∈ T : |g(x)| > 0}

coincides with core(w), up to a set of m-measure zero. For any interval I contained in core(w) it
follows from the pointwise inequality |g| ≥ w and the definition of core(w) that∫

I

log |g| dm ≥
∫
I

logw dm > −∞.

Thus g has structure as claimed in the statement of Theorem C, and the proof is complete. □
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