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Abstract. The classical Korenblum-Roberts Theorem characterizes the cyclic singular

inner functions in the Bergman spaces of the unit disk D as those for which the corre-

sponding singular measure vanishes on Beurling-Carleson sets of Lebesgue measure zero.

We solve the weighted variant of the problem in which the Bergman space is replaced by

a Pt(µ) space, the closure of analytic polynomials in a Lebesgue space Lt(µ) correspond-

ing to a measure of the form dAα + w dm, with dAα being the standard weighted area

measure on D, dm the Lebesgue measure on the unit circle T, and w a general weight

on T. We characterize when Pt(µ) of this form is a space of analytic functions on D by

computing the Thomson decomposition of the measure µ. The structure of the decom-

position is expressed in terms of what we call the family of associated Beurling-Carleson

sets. We characterize the cyclic singular inner functions in the analytic Pt(µ) spaces as

those for which the corresponding singular measure vanishes on the family of associated

Beurling-Carleson sets. Unlike the classical setting, Beurling-Carleson sets of both zero

and positive Lebesgue measure appear in our description. As an application of our results,

we complete the characterization of the symbols b : D → D which generate a de Branges-

Rovnyak space with a dense subset of functions smooth on T. The characterization is

given explicitly in terms of the modulus of b on T and the singular measure corresponding

to the singular inner factor of b. Our proofs involve Khrushchev’s techniques of simulta-

neous polynomial approximations and linear programming ideas of Korenblum, combined

with recently established constrained L1-optimization tools.

This research is supported by Vetenskapsr̊adet (VR2024-03959).
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1. Introduction

1.1. A bit of background. Let P denote the set of analytic polynomials in a single

complex variable z,

P :=

{
n∑

i=0

piz
i : pi ∈ C, n ∈ N ∪ {0}

}
and let µ be a finite non-negative Borel measure compactly supported in the complex plane

C. Given such a measure and a number t ∈ (0,∞), the closure of P in the Lebesgue space

Lt(µ) is customarily denoted by P t(µ). If dµ = dm, the Lebesgue measure on the unit circle

T = {z ∈ C : |z| = 1}, then P t(µ) is the classical Hardy space Ht of analytic functions

on the unit disk D = {z ∈ C : |z| < 1}, while if dµ = dA is the area measure on D, then
P t(µ) is the Bergman space of area t-integrable functions on D. In contrast, if dµ = dxI ,

the Lebesgue measure on an interval I ⊂ R, then P t(µ) = Lt(µ) is the Lebesgue space

itself, a space of measurable functions exhibiting no analytic properties. In general, the

nature of P t(µ) is complicated, and the three mentioned examples illustrate in a sense the

extreme cases. By the decomposition theorem of Thomson from [28], the space P t(µ) can

always be decomposed into pieces, P t(µ) = ⊕iP t(µi), which with at most one exception

are analytic, in the sense that functions in the space are analytic on some open set. The

potential exceptional piece is a full Lebesgue space.

The identification of the pieces µi for a general planar measure µ is a task too ambitious

for the present work. In regards to this we mention that identification of the pieces in the

Thomson decomposition of a deceptively simple-looking measure µ composed of two pieces,

a radially weighted area measure on D with very fast decay near T, and a weighted Lebesgue

measure on T, is essentially equivalent to Volberg’s deep theorem from [29] on summability

of the logarithmic integral of functions with appropriate one-sided Fourier decay (see also

the exposition by Volberg and Jöricke in [31], and the introductory sections of [18] and

[30]). Other results of this type can be deduced from Khrushchev’s profound work in

[14] on simultaneous polynomial approximation, which can be used to establish Thomson

decompositions with applications to the theory of the Cauchy integral operator. In [20] it

was found that the structure of invariant subspaces of the shift operator Mz : f(z) 7→ zf(z)

acting on certain P2(µ) spaces is connected with the problem of approximation by functions

of various boundary regularity in de Branges-Rovnyak spaces H(b). In this context, an

issue arises which calls for an extension of the results of Korenblum from [17] and Roberts

from [26] on cyclic singular inner functions in the Bergman spaces to the context of P2(µ)

spaces. It is these applications that are the main motivation for the research presented in

this article.
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1.2. Main research questions. The measures µ considered here will be of the form

appearing in (1.2) below. The particular structure of the measure makes P t(µ) exhibit

properties commonly associated with three distinct spaces which have already been men-

tioned: the Hardy space P t(dm), the Bergman space P t(dA), and the Lebesgue space

Lt(dm). The following two questions are answered in the article.

Question 1. What measures µ of the form (1.2) make the space P t(µ) into a genuine

space of analytic functions on D?

Question 2. Given that the space P t(µ) of the form (1.2) really is a space of analytic

function, what bounded functions f ∈ P t(µ) are cyclic for the shift operator Mz : f(z) 7→
zf(z)? Namely, what bounded functions are such that [f ], the smallest closed Mz-invariant

subspace of P t(µ) which contains f , is the whole space itself?

The first question will be answered by computing the Thomson decomposition of a

measure of the form (1.2). The methods which we shall use for this have already been

presented in previous articles [3], [22] and [24], but they need to be combined. It is

the second question that we consider here to be the important one. Modulo standard

arguments, the question can be answered by describing the cyclic singular inner functions

(1.1) Sν(z) := exp
(
−
∫
T

ζ + z

ζ − z
dν(ζ)

)
, z ∈ D.

Here ν is a finite non-negative Borel measure on T, singular with respect to Lebesgue

measure dm. The singular inner functions are members of H∞, the algebra of bounded

analytic functions in D, and are characterized as those functions in H∞ which are non-

vanishing in D and have non-tangential boundary values on T of unit modulus, almost

everywhere with respect to the Lebesgue measure dm.

The restriction in the second question to consider bounded functions is important. See

Section 1.5 for comments on this.

1.3. Beurling-Carleson sets associated to a space. We will obtain complete results

for measures µ of the following structure:

(1.2) dµ = dAα + w dm.

Here

(1.3) dAα(z) = (1− |z|)αdA(z), α > −1

is the standard weighted area measure on the unit disk D, and w is a non-negative Borel

measurable function on T.
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Answers to the two questions will be given in terms of a class of subsets of T associated

with the space. Let h(x) : (0, 1) → R+ be the function

(1.4) h(x) = x log(e/x).

The class of Beurling-Carleson sets consists of those closed subsets E ⊂ T for which the

system {ℓk}k of maximal open arcs complementary to E in T satisfies

(1.5)
∑
k

h(|ℓk|) < ∞.

Here, and throughout the article, |S| = m(S) is the Lebesgue (arclength) measure of the

set S. We denote the class of Beurling-Carleson sets by BC, and we emphasize that BC is

not restricted to contain only sets of Lebesgue measure zero, as in some earlier works on

cyclic vectors. Furthermore, we introduce the family of w-associated BC sets, which is the

subclass of BC on which w is logarithmically integrable:

(1.6) AssocBC(w) =
{
E : E ∈ BC,

∫
E

logw dm > −∞
}
.

Note that if E ∈ BC is of Lebesgue measure zero, then E ∈ AssocBC(w) automatically.

1.4. Main results. Our first theorem answers the first of the questions stated above. It

is a direct generalization to the weighted context of the main result in [24]. The statement

requires some definitions which are generalizations of those in [24].

Consider the non-negative quantity

C := sup
{
|E| : E ∈ AssocBC(w)

}
.

If C = 0, we set core(w) = ∅, and otherwise we define

core(w) :=
⋃
n

En

where {En}n is any increasing sequence of sets in AssocBC(w) for which limn |En| = C.

The existence of such a sequence is ensured by the class AssocBC(w) being closed under

finite unions (see [24, Proposition 3.2]). It is not hard to see that core(w) is in this way

well-defined up to a set of Lebesgue measure zero, and it does not depend on the initial

choice of the sequence {En}n. Clearly, sets of Lebesgue measure zero in AssocBC(w) play
no role in shaping core(w), but they will play a role in our description of cyclic singular

inner functions.

We define the residual set of w as the difference of its natural carrier and the core:

res(w) := {z ∈ T : w(z) > 0} \ core(w).
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Throughout the article, a carrier for a Borel measure σ on T will be any subset C ⊂ T for

which we have σ(C ∩ S) = σ(S) for all Borel subsets S of T. If w ∈ L1(dm), then we say

that C is a carrier for w if it is a carrier for the measure w dm.

Like core(w), the set res(w) is also defined only up to a set of Lebesgue measure zero.

We decompose w into pieces wc, wr living on the core and residual, respectively:

wc = w|core(w), wr = w|res(w).

In the considered family of P t(µ) spaces corresponding to measures µ of the form (1.2),

the restriction f |D of any element f ∈ P t(µ) is an analytic function living in a Bergman

space P t(dAα). We will say that the space P t(µ) of the form (1.2) is irreducible if the

restriction mapping f 7→ f |D is injective on P t(µ). In such a case, each element f ∈
P t(µ) can be uniquely identified with an analytic function on D, and so P t(µ) is itself a

space of analytic functions on D, continuously contained in the Bergman space P t(dAα).

Although it may not be a priori obvious, our definition of irreducibility for our class of

spaces coincides with the more general one in [2] and [28] which involves non-existence of

non-trivial indicator functions in the space. We will sometimes use the term analytic P t(µ)

space synonymously with irreducible P t(µ) space.

Theorem A. Let µ be as in (1.2). We have the decomposition

P t(µ) = P t(dAα + wc dm)⊕ Lt(wr dm),

where P t(dAα + wc dm) is irreducible.

More precisely, the decomposition is to be interpreted in the following sense: any f in one

of the summands on the right-hand side has an extension to an element Lt(µ) by setting

f to zero outside of its initial carrier set, and these extended elements are in fact members

of P t(µ) and they span the whole space. The theorem is a refined version of a result from

[3], which established the decomposition in an important special case w = wr, and which

confirmed an old conjecture of Kriete and MacCluer from [18]. The irreducibility of the

piece P t(dAα +wc dm) has essentially been known since the 1970s as a consequence of the

work of Khrushchev in [14], although his results are not coined in terms of P t(µ) spaces.

We will fill in the details of the necessary modifications of his proof in Section 3. A different

proof of irreducibility for t = 2 is given in [21, Proposition 5.1]. Our principal contribution

in this direction establishes that P t(dAα + wc dm) is the maximal irreducible piece. We

deduce from Theorem A that our P t(µ) is a space of analytic functions on D if and only if

core(w) is a carrier set for w.
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Having settled the analyticity question, we may get to the main matter. Here is our

cyclicity result.

Theorem B. Let µ be as in (1.2), and assume that P t(µ) is a space of analytic functions

on D. The singular inner function Sν is cyclic in P t(µ) if and only if ν vanishes on all

associated sets:

ν(E) = 0, E ∈ AssocBC(w).

It is the sufficiency for cyclicity of the vanishing condition on the associated sets that

should be seen as the main new contribution of this article. The necessity of the condition is

easier to establish than the sufficiency, and one can say a bit more. In [21, Corollary 6.5] it

has been proved that if ν is supported on a set in AssocBC(w) and [Sν ] is the Mz-invariant

subspace generated by Sν in P2(µ), then we have f/Sν ∈ H∞ for any f ∈ [Sν ] ∩ H∞. In

other words, Sν appears as a factor in the usual inner-outer factorization of any non-zero

f ∈ [Sν ] ∩ H∞. This property of course implies that 1 ̸∈ [Sν ], so such Sν is not cyclic. In

Section 4 we use methods from [4] to extend this result to t ̸= 2.

Using the result indicated in the above paragraph, we may describe the Mz-invariant

subspace [f ] of P t(µ) generated by a bounded function f in the following way. Let f =

BSνU be the inner-outer factorization of f into a Blaschke product B, singular inner

function Sν , and a bounded outer function U . Let νp be the least upper bound of all

restrictions ν|E of ν to sets E ∈ AssocBC(w), and write

(1.7) ν = νp + νc.

One way to construct νp more explicitly is to employ an argument similar to the one

used in the construction of the set core(w). Namely, take an increasing sequence {En}n of

sets in AssocBC(w) which satisfies

lim
n→∞

ν(En) = sup
E∈AssocBC(w)

ν(E)

and define νp as the restriction of ν to the Borel set
⋃

nEn. Clearly νp constructed in

this way satisfies the measure inequality ν|E ≤ νp for any E ∈ AssocBC(w). We note

that νp has as a carrier a countable union of sets in AssocBC(w), and νc(E) = 0 for

E ∈ AssocBC(w). From Theorem B we can deduce the following consequence.

Corollary. Let f = BSνU be the inner-outer factorization of a function f ∈ H∞. Then

[f ] = [BSνp ],

and every function h ∈ [f ] ∩H∞ satisfies h/BSνp ∈ H∞.
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We give a proof of the corollary at the end of Section 5. Theorem B and the corollary

answer the second of our questions stated above.

We remark that there is a huge difference between the trivial case T ∈ AssocBC(w),
which implies that |T \ core(w)| = 0, and this latter condition |T \ core(w)| = 0. In the

first case we have logw ∈ L1(dm), and the structure of P t(µ) is simple. It is then a space

of analytic functions contractively contained in a weighted Hardy space W · Ht, where W

is an outer function satisfying |W | = w−1/2 on T, and where the norm of W · f in W · Ht

is the norm of f in Ht. In particular, no singular inner functions are then cyclic in P t(µ).

However, in the second case, such an identification does not in general hold. Although we

shall not go into details of a construction, we wish to mention that it is possible to exhibit

examples of singular inner functions Sν which are cyclic in a space P t(µ) constructed from

µ of the kind (1.2) for which |T \ core(w)| = 0.

1.5. Related results and comments.

1.5.1. Korenblum-Roberts Theorem. A singular inner function is not cyclic in the Hardy

spaces Ht = P t(dm). The situation is different in the context of Bergman spaces P t(dAα),

and was explained in the 1980s in the works of Korenblum in [17] and Roberts in [26].

They gave two very different proofs of the following statement, a precursor of our main

result in Theorem B.

Theorem (Korenblum-Roberts cyclicity theorem). The singular inner function Sν

is cyclic in the standard weighted Bergman spaces P t(dAα), t ∈ (0,∞), if and only if ν

vanishes on all Beurling-Carleson sets of Lebesgue measure zero:

ν(E) = 0, E ∈ BC, |E| = 0.

Korenblum derives the result from his famous works [15] and [16] on cyclic vector in the

so-called growth classes. The proof of Roberts is completely different and of importance in

its own right. Note that if we set w ≡ 0 on T, then AssocBC(w) coincides with the family

of BC sets of Lebesgue measure zero. Consequently, the Korenblum-Roberts theorem is a

special case of Theorem B, but the argument we present below is not a new proof of the

classical result. To establish Theorem B, we will use extensions of linear programming

techniques of Korenblum from [15], [16] augumented with recently obtained specialized

constrained L1-optimization tools from [3] which we describe in Section 2. Techniques of

Roberts, on the other hand, have recently found interesting applications, for instance in

the works of Ivrii in [12] and Ivrii and Nicolau in [13].
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1.5.2. Faster decreasing weights on D. Several of our results have versions for measures µ

of structure similar to (1.2) but where dAα is replaced by a radial measure G(|z|)dA(z)
with G(x) → 0 as x → 1 sufficiently slowly, see (3.1) below. These results have essentially

the same proofs as our main theorems, and in the coming sections we shall carry out our

arguments in the general context and state the generalized results. Our method does not

apply to weights of the form G(x) = exp
(
−c/(1−x)

)
for c > 0. The structure of the space

P2(µ) of this form has been studied in [22] and [23], and is analogous to the one presented

here in Theorem A and Theorem B, but where the associated sets AssocBC(w) are replaced
by the family of intervals on which w has an integrable logarithm. The new difficulties

in the setting considered here are related to the complexity of the sets in AssocBC(w) in
comparison to intervals. In particular, in [22] and [23] no use of linear optimization theory

was necessary.

1.5.3. The work of Aleman, Richter and Sundberg. Work on analytic P t(µ) spaces from

a different viewpoint than ours has been carried out by Aleman, Richter and Sundberg.

Their article [2] is concerned with function and operator theory in P t(µ) spaces for a general

measure µ supported in the closed unit disk D = D∪T. In the article, the authors work from

the get go under the assumption that P t(µ) is a space of analytic functions on D, without
any additional assumptions on the structure of the measure µ. Using in part methods of

Thomson from [28], they obtain the important existence result for non-tangential boundary

values for functions in the space, and as a consequence obtain information regarding zero

and interpolating sequences. They prove also the important index theorem forMz-invariant

subspaces: given any Mz-invariant subspace N ⊂ P t(µ), the orthogonal complement of

MzN inside N has dimension 1.

1.5.4. Unbounded cyclic functions. We stress that the restriction to consider bounded func-

tions f ∈ H∞ in our cyclicity problem is motivated by the applications, which we shall

soon present, but it is also critical. Our main result in Theorem B and the corollary above

has a straight-forward extension to cyclic functions f in the Nevanlinna class, i.e, quotients

f = d/c of bounded analytic functions d, c in D (see the end of Section 5 for the precise

statement and a short argument), but the problem of characterizing the cyclicity for a

more general function f ∈ P t(µ), even in the case dµ = dA, is a well-known open problem

in the theory of Bergman spaces. In that context, a sufficient condition and a necessary

condition, which are not too far apart, follow from Korenblum’s works [15], [16] on the

extended Nevanlinna class. Widening of our results to the setting of Korenblum’s works

requires some further efforts which are not part of this article.
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1.6. An application to H(b) spaces. Our corollary to Theorem B has a direct appli-

cation to the theory of de Branges-Rovnyak spaces H(b), a family of Hilbert spaces of

analytic functions in D associated to analytic self-maps b of D. We refer the reader to [6],

[7] and [27] for the theory of these spaces. With aid of the results in [20] and [21], results of

the present work enable us to complete the characterization of the class of symbols b cor-

responding to spaces H(b) admitting a norm dense subset of functions in A∞, the algebra

of analytic functions in D with C∞ extensions to the boundary T.
It was found in [20, Theorem 1.1] that two necessary conditions for the density of A∞ ∩

H(b) in H(b) can be expressed in terms of the structure of Mz-invariant subspaces of P2(µ),

where µ has the form (1.2), and

(1.8) w = ∆ :=
√
1− |b|2.

The parameter α in the definition of dAα is unimportant. If b = BSνU is the inner-outer

factorization of b into a Blaschke product B, singular inner functions Sν and outer function

U , then the two necessary conditions, expressed in the language of this article, are that

(i) P2(µ) should be a space of analytic functions,

(ii) any function h ∈ [Sν ] ∩H∞ should satisfy h/Sν ∈ H∞.

The results of this article imply that (i) is satisfied if and only if the set core(∆) is a

carrier for ∆, while (ii) is satisfied if and only if ν = νp in (1.7). Moreover, in [21, Theorem

B] it is shown that these last two conditions are sufficient for density of A∞∩H(b) in H(b).

Combining these results, we obtain a complete and explicit characterization.

Theorem C. Let b = BSνU be the inner-outer factorization of b, and let ∆ be given by

(1.8). The set A∞ ∩H(b) is norm dense in the space H(b) if and only if the following two

conditions are satisfied:

(i) the set core(∆) is a carrier for ∆,

(ii) we have ν = νp in (1.7).

In other words, the two conditions say that both ∆ and ν live on a countable union

of sets in AssocBC(∆). The union corresponding to ν may need to be a blend of BC
sets of both zero and positive Lebesgue measure. Note that Sarason’s classical condition

log∆ ∈ L1(T), which appears for instance in [27] and characterizes the density of the set

of analytic polynomials P in H(b), simply means that T ∈ AssocBC(∆). In this case,

conditions (i) and (ii) in Theorem C are obviously satisfied.
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Theorem C can be seen as a companion to a previous result of the author and Aleman

in [1], in which it is asserted that functions in H(b) continuous up to the boundary T are

always dense in H(b).

1.7. Outline of the article. In Section 2, we introduce our principal optimization tools

from [3] which form the technical backbone of the article. In Section 3 we use the results

of the previous section to establish Theorem A. Section 4 is concerned with establishing

the necessity for cyclicity of the vanishing condition on associated sets in Theorem B.

The proof of Theorem B is completed in Section 5. There, we combine the optimization

tools from Section 2 with Korenblum’s linear programming techniques from [15] and [16]

to establish the sufficiency for cyclicity of the vanishing condition in Theorem B. Section 5

contains also proofs of some other auxiliary results mentioned above.

Mainly for convenience, we follow Korenblum’s idea to use the concept of a premeasure.

Because of our need for certain simple generalizations of Korenblum’s premeasure results,

we include Appendix A which covers the basic facts regarding premeasures that are used

in the proofs.

2. An optimization problem and the Hausdorff functional

In this section, we introduce our principal L1-optimization problem and the functionals

M(h,R) from [3]. We derive the critical lower estimate in (2.5) on the optimal value in

the optimization problem from a duality theorem relating it to the functional M(h,R).

In the context of our main results, we think of h as a positive scalar multiple of (1.4),

but the functional M(h,R) may be defined on a larger class of functions h which we will

introduce next. The broader context leads to no additional difficulties in the proofs, and

on the upside it allows us to prove results slighly more general than the ones presented in

Theorem A and Theorem B.

2.1. The principal L1-optimization problem. The most important properties of the

function h in (1.4) are that h is increasing and continuous on (0, 1], satisfies h(0) :=

limx→0 h(x) = 0, and additionally

(R1) h(x)/x is decreasing in x,

(R2) limx→0 h(x)/x = ∞.

We will say that any function h is a gauge function if it satisfies the above properties. It is

easy to verify subadditive inequality h(x+ y) ≤ h(x) + h(y). The argument x of h(x) will

for the most part be the length |I| of an interval I ⊂ T. We use throughout the article the

normalization |T| = m(T) = 1.
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Given a non-negative function R : T → [0,∞] and a gauge function h, the family F(h,R)

is to consist of all non-negative functions on T dominated pointwise by R and satisfying a

local mass distribution bound defined in terms of the gauge h:

(2.1) F(h,R) :=
{
f ∈ L1(dm) : 0 ≤ f ≤ R,

∫
ℓ

f dm ≤ h(|ℓ|) for all intervals ℓ
}
.

Denote by ∥f∥1 =
∫
T |f | dm the usual L1(dm) norm of f . The optimal amount of mass

that can be distributed under the constraints defining F(h,R), namely

sup
{
∥f∥1 : f ∈ F(h,R)

}
,

will be of main importance in the article.

2.2. Hausdorff functionals and their duality. Here is a dual way to express the pre-

vious supremum. With notation as above, we introduce the quantity

(2.2) M(h,R) := inf
U

(∑
ℓ∈U

h(|ℓ|) +
∫
T\∪ℓ∈U ℓ

Rdm
)

where the infimum above is taken over all countable families U = {ℓ} of open intervals ℓ in

T. With h fixed and R = ∞·1E, where 1E is the indicator function of a measurable subset

E ⊂ T, the mapping E 7→ M(h,∞· 1E) is similar to a degree to the definition of the usual

Hausdorff content of the set E. We will call M(h,R) for the Hausdorff functional.

The importance of the Hausdorff functional comes from the following result established

in [3]. It is of the type commonly encountered in the duality theory for linear programs.

Proposition 2.1. (Duality for Hausdorff Functionals) We have the inequality

6 · sup
{
∥f∥1 : f ∈ F(h,R)

}
> M(h,R).

We note that the reverse inequality

sup
{
∥f∥1 : f ∈ F(h,R)

}
≤ M(h,R)

follows readily from the definitions (see [3]).

2.3. Generalized cores, residuals, and the residual bound. We may define the fam-

ily AssocBCh(w) and the sets coreh(w), resh(w) analogously to how it was done in the In-

troduction by replacing the function in (1.4) with a more general gauge function. Namely,

for any gauge function h, we define the family BCh of closed subsets of T which satisfy
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(1.5), and we let AssocBCh(w) be defined as in (1.6) with BCh replacing BC. The sets

coreh(w) and resh(w) are also defined analogously. We set

coreh(w) =
⋃
n

En

for any increasing sequence {En}n of BCh sets satisfying

lim
n

|En| = sup
{
|E| : E ∈ AssocBCh(w)

}
,

and we set

resh(w) = {z ∈ T : w(z) > 0} \ coreh(w).

For h in (1.4), our generalized definitions reduce to the ones stated in the Introduction.

Properties of core and residual sets in the unweighted context are presented in [24].

With some necessary and natural modifications, these properties carry over to the weighted

context. The most important property of the set coreh(w) is the implication

(2.3) E ∈ AssocBCh(w) ⇒ |E \ coreh(w)| = 0.

In other words, up to differences of Lebesgue measure zero, the set coreh(w) contains all sets

in AssocBCh(w). The implication (2.3) is non-trivial only for sets E of positive Lebesgue

measure, of course. The proof of the implication is straight-forward (see the proof of [24,

Proposition 3.3] for a similar argument).

The following weighted version of [24, Proposition 3.5] is the most important property

of the set resh(w) which we shall use.

Lemma 2.2. (Residual Lower Bound) Let R = log+(1/w). If I is an interval in T
and R|I is the restriction of R to I, then

M(h,R|I) ≥ h(|I ∩ resh(w)|).

In the above statement, and throughout the article, we use a slightly non-standard

convention: we interpret the restriction f |S of a function f to a set S as the function

coinciding with f on the set S, and vanishing elsewhere. As usual, we set log+(x) :=

max(log x, 0). Note that we have the equivalence∫
E

log+(1/w) dm < +∞ ⇔
∫
E

logw dm > −∞.

In other words, E ∈ BCh is in AssocBCh(w) if and only if R is integrable on E.
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Proof of Lemma 2.2. Let U = {ℓ} be any family of open intervals contained in I for which

the right-hand side in (2.2) is finite (with R replaced by R|I). Setting E := I \ ∪ℓ∈Uℓ, it

follows that

(2.4)

∫
E

Rdm =

∫
E

log+(1/w) dm < ∞.

If we assume that I is closed, which we clearly may without loss of generality, then E

is closed. Since
∑

ℓ∈U h(|ℓ|) < ∞, it follows that E ∈ BCh, and (2.4) shows that in fact

we have E ∈ AssocBCh(w). This implies by (2.3) that |E \ coreh(w)| = 0, and so E is

contained in coreh(w), up to a set of Lebesgue measure zero. In particular, we must have

|E ∩ resh(w)| = 0, from which it follows that I ∩ resh(w) is contained in ∪ℓ∈Uℓ, again up to

a set of Lebesgue measure zero. But then

|I ∩ resh(w)| ≤ | ∪ℓ∈U ℓ| ≤
∑
ℓ∈U

|ℓ|,

and, since h is increasing and subadditive, we obtain

h(|I ∩ resh(w)|) ≤
∑
ℓ∈U

h(|ℓ|) ≤
∑
ℓ∈U

h(|ℓ|) +
∫
I\∪ℓ∈U ℓ

Rdm.

The claim follows by taking infimum over families U = {ℓ} in the last inequality. □

Combining Proposition 2.1 with Lemma 2.2, and using notation as in Lemma 2.2, we

obtain the important lower bound

(2.5) sup
{
∥f∥1 : f ∈ F(h,R|I)

}
>

h(|I ∩ resh(w)|)
6

This critical estimate will let us generalize the main result of [24] into Theorem A. Note

that a truncation shows that there always exist a bounded function f ∈ F(h,R) for which

6
∫
T f dm = M(h,R).

3. Thomson decomposition of the measure

The goal of the section is to prove Theorem A. At no additional strain, we carry out

the proof in the context of general gauge function h and in this way obtain more general

results. We assume throughout that logw ̸∈ L1(dm), since the contrary case is trivial, as

explained at the end of Section 1.4.
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3.1. A more general class of measures. Given a gauge function h satisfying the prop-

erties (R1) and (R2) stated in Section 2.1, we may associate to it the the family of measures

(3.1) dµ = GahdA+ w dm, a > 0,

where

Gah(z) = exp
(
− a

h(1− |z|)
1− |z|

)
, z ∈ D.

Note that the functions Gah(x) are decreasing in x ∈ (0, 1), and so strictly speaking

(3.1) does not include measures of the form (1.2) for α ∈ (−1, 0), but this difference is

insignificant. For certain choices of the gauge h a direct generalization of Theorem A to

measures of the form (3.1) holds. The corresponding decomposition of the weight w is

wc = w|coreh(w), wr = w|resh(w)

with definitions as in Section 2.3. More precisely, we will show that for any h we have the

decomposition

(3.2) P t(µ) = P t(GahdA+ wc dm)⊕ Lt(wr dm).

The irreducibility of the piece P t(Gah + wc dm) will be established in Section 3.4 below,

but only under some additional regularity assumptions on h which in particular hold for

the gauge function in (1.4).

In context of the measures µ of the form (1.2), we always assume that the gauge h has

the form (1.4).

3.2. A sufficient condition for establishing the decomposition. To establish the

direct sum decomposition in Theorem A, or the one in (3.2), it will suffice to show that

(3.3) Lt(wr dm) ⊂ P t(µ).

Here we interpret f ∈ Lt(wr dm) as an element of Lt(µ) by extending f to be zero outside

of the set {z ∈ T : wr(z) > 0} (which is well-defined up to a set of Lebesgue measure zero).

Indeed, if (3.3) holds, then for every f ∈ P t(µ) we have that f − f |resh(w) ∈ P t(dAα +

wc dm) ∩ P t(µ), and f |resh(w) ∈ Lt(wr dm) ∩ P t(µ).

The following lemma, essentially contained in [22, Lemma 2.1 and proof of Lemma 3.1],

lets us reduce our task to a construction of a specific function inside P t(µ).

Lemma 3.1. In order to establish (3.3), it suffices to show that there exists F ∈ P t(µ)

which satisfies F |D ≡ 1, F |resh(w) ≡ 0, and F |T ∈ Lt∗(w dm) for some t∗ > max(t, 1).
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Proof. If f ∈ P t(µ) is as stated, then g = 1 − F ∈ P t(µ) vanishes on D and is non-zero

almost everywhere on resh(w). The Mz-invariant subspace [g] of P t(µ) generated by g is

then a subspace of Lt(w dm), with containment interpreted as in (3.3).

Let us first assume that t > 1. Then, since [g] is a subspace of Lt(w dm) which is

invariant for the operator Mz, the space

w1/t[g] := {w1/th : h ∈ [g]}

is contained in Lt(dm) and it has one of the two forms well known from the classical

Beurling-Wiener Theorem (see [22, Section 2.3]). Namely, either we have

(3.4) w1/t[g] = {qH : H ∈ Ht}

for some unimodular function q on T, Ht being the Hardy space, or for some S ⊂ T we

have

(3.5) w1/t[g] = Lt(dm|S) = {f ∈ Lt(dm) : f ≡ 0 m-a.e outside of S}.

In the first case, every non-zero function d ∈ [g] can be expressed as w1/td = qH for some

non-zero H ∈ Ht, and so∫
T
log(w1/t|d|) dm =

∫
T
log |H| dm > −∞,

the last inequality being a well-known property of non-zero functions in Ht. Since g ∈
Lt∗(w dm), t∗ > t, a simple computation shows that∫

T
log(w1/t|g|)dm = −∞

(see [22, proof of Lemma 3.1] and recall that we assume logw ̸∈ L1(dm)). Since we can set

d = g above, the alternative (3.4) is excluded, and we deduce that we are in the situation

in (3.5). Since w1/tg does not vanish on the set resh(w), the set S in (3.5) must contain

resh(w), up to a difference of Lebesgue measure zero. It follows that if f ∈ Lt(wr dm), then

w1/tf ∈ Lt(dm|S) = w1/t[g]

Hence Lt(wrdm) ⊂ [g], and we have verified (3.3) in the case t > 1.

If t ≤ 1, then since for t < t′, convergence in Lt′(w dm) implies convergence in Lt(w dm),

the previous argument may be applied to some t′ > 1 slightly smaller than t∗ to conclude

that [g] (which, we emphasize, is a subspace of P t(µ)) contains the corresponding Mz-

invariant subspace generated by g in Lt′(w dm). By the proof of the case t > 1, in particular

[g] will contain all bounded measurable functions living on the set where wr is non-zero.

A density argument then shows that [g] contains Lt(wr dm). □
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3.3. The construction. We proceed to show how to obtain f ∈ P t(µ) satisfying the

properties mentioned in Lemma 3.1. The function f will be obtained as a weak cluster

point of the outer functions

(3.6) FN(z) := exp
(∫

T

ζ + z

ζ − z
fN(ζ)dm(ζ)

)
, z ∈ D, N ∈ N

where fN ∈ L∞(dm) are carefully chosen real-valued functions. Note that FN ∈ H∞,

and so the containment FN ∈ P t(µ) follows from a straight-forward argument involving a

dilation and a Taylor series truncation.

The following result is the improvement of [3, Lemma 3.1] needed to establish the sought-

after direct sum decomposition. The proof is the same, with the exception that we utilize

the new inequality (2.5).

Lemma 3.2 (Main Construction). Let h be a gauge function. There exists a sequence

of real-valued function {fN}N on T satisfying the following conditions:

(i) for any ϵ > 0, the pointwise inequality fN ≤ ϵ · log+(1/w) holds for all N sufficiently

large,

(ii) for any ϵ > 0, the inequality
∫
I
fN dm ≤ ϵ · h(|I|) holds for all intervals I ⊂ T and all

N sufficiently large,

(iii)
∫
T fN dm = 0,

(iv) fN ≤ 0 on resh(w), and fN(x) → −∞ m-almost everywhere on resh(w).

Proof. Fix a positive integer N and set

(3.7) AN := {ζ ∈ resh(w) : R(ζ) = log+
(
1/w(ζ)

)
≤ M(N)},

where M(N) is some positive number soon to be specified. Note that if M(N) → ∞ as

N → ∞, then ∪NAN is a set of full measure in resh(w), namely | ∪N AN | = |resh(w)|. This
will be important at the end of the proof, when part (iv) above will be verified for our

construction.

Denote by 1A the indicator function of a set A. Divide T into N half-open intervals

{Ik}Nk=1 of equal length, and define fN according to

(3.8) b(N) · fN :=
∑

k:|Ik∩AN |>0

gN,k · 1Ik\AN
− CN,k · 1Ik∩AN

,

where b(N) is a large positive number soon to be specified, where gN,k ∈ F(h,R|Ik) is

bounded and satisfies

(3.9)

∫
Ik

gN,k dm ≥ h(|Ik ∩ resh(w)|)
6
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and where CN,k is the unique positive number which ensures that
∫
Ik
fN dm = 0, that is,

(3.10) CN,k =

∫
Ik\AN

gN,k dm

|Ik ∩ AN |
.

The existence of gN,k is ensured by inequality the (2.5).

Since gN,k ∈ F(h,R|Ik), it follows that b(N) ·fN ≤ log+(1/w) on T, and so we ensure (i)

if b(N) is chosen sufficiently large. In particular, this holds if a priori we have b(N) → ∞
as N → ∞, which we will be able to ensure.

If I is any interval on T, then b(N)·fN integrates to zero over any interval Ik contained in

I, and so if Il and Ir are the the two intervals among {Ik}Nk=1 which contain the endpoints

of I, we obtain ∫
I

b(N) · fN dm =

∫
Il

b(N) · fN dm+

∫
Ir

b(N) · fN dm

≤
∫
Il∩I

gN,l dm+

∫
Ir∩I

gN,r dm

≤ 2 · h(|I|).

We used that gN,l ∈ F(h,R|Il) and gN,r ∈ F(h,R|Ir) in the last inequality. Again, we

obtain (ii) if b(N) → ∞ as N → ∞.

Part (iii) holds since

b(N) ·
∫
T
fN dm = b(N) ·

∑
k:|I:k∩AN |>0

∫
Ik

fN dm = 0.

It remains to show that choices of M(N) in (3.7) and b(N) in (3.8) can be made so that

(iv) holds. Since AN ⊂ resh(w) implies |Ik ∩ AN | ≤ |Ik ∩ resh(w)|, and gN,k ≤ R ≤ M(N)

on AN , we may use (3.9) and (3.10) to estimate

|Ik ∩ resh(w)| · CN,k ≥ |Ik ∩ AN | · CN,k

=

∫
Ik

gN,k dm−
∫
Ik∩AN

gN,k dm

≥ h(|Ik ∩ resh(w)|)
6

− |IK ∩ AN | ·M(N)

≥ h(|Ik ∩ resh(w)|)
6

− |Ik ∩ resh(w)| ·M(N).

If |Ik ∩ AN | > 0, then we may divide by the larger quantity |Ik ∩ resh(w)| to obtain

(3.11) CN,k ≥
h(|Ik ∩ resh(w)|)
6|Ik ∩ resh(w)|

−M(N) ≥ h(1/N)

6/N
−M(N).
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The second of the above inequalities holds since |Ik∩ resh(w)| ≤ |Ik| = 1/N , and h satisfies

property (R1) stated in Section 2.1. Set

M(N) = b(N) =
√

N · h(1/N).

Then M(N), b(N) tend to ∞ as N → ∞ as a consequence of (R2), and we obtain from

(3.11) that

CN,k

b(N)
≥
√

Nh(1/N)

12

for N sufficiently large. Since fN = −CN,k/b(N) on Ik ∩ AN irrespective of k, we obtain

fN ≤ −
√
Nh(1/N)

12

on AN . Since the sets AN are increasing with N , and ∪NAN is a set of full measure in

resh(w), property (R2) ensures that (iv) also holds. □

It is well known that the outer function FN satisfies |FN | = | exp(fN)| m-almost ev-

erywhere on T . Thus for any small ϵ and all sufficiently large N , we obtain from (i) of

Lemma 3.2 that

|FN |tw ≤ exp
(
tϵ log+(1/w)

)
w ≤ w + w1−tϵ ∈ L1(dm),

which shows that the family {FN}N is uniformly norm bounded in Lt(w dm) for any t ∈
(0,∞). We have also the estimate

(3.12) |FN(z)| ≤ exp
(
ϵ
h(1− |z|)
1− |z|)

)
, z ∈ D

for any small ϵ > 0 and all sufficiently large N . This follows immediately from a classical

Poisson integral estimate and part (ii) of Lemma 3.2. Namely, if h is a gauge function, σ is

a real-valued Borel measure satisfying σ(T) = 0, and σ(I) ≤ h(|I|) for all intervals I ⊂ T,
then there exists a constant C = C(h) > 0 for which the estimate

(3.13) Re

(∫
T

ζ + z

ζ − z
dσ(ζ)

)
=

∫
T

1− |z|2

|ζ − z|2
dσ(ζ) ≤ C · h(1− |z|)

1− |z|
, z ∈ D

holds. See [10, p. 297] for a simple proof.

For h as in (1.4), whenever ϵ is so small that α− tϵ > −1 and N is sufficiently large, we

obtain from (3.12) that

|FN(z)|t(1− |z|)α ≤ 3 · (1− |z|)α−tϵ ∈ L1(dA).
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Thus {FN}N is a uniformly norm bounded subset of Lt(dAα) for any t ∈ (0,∞). Similarly,

we obtain from (3.12) that for any gauge function h and all large N we have

|FN(z)|tGah(z) ≤ 1, z ∈ D.

Combining our estimates, we have just verified that for any of the considered measures µ

and any t > 0, the family {FN}N is uniformly norm bounded in Lt(µ).

Proof of the direct sum decomposition in Theorem A and in (3.2). Let t∗ > max(t, 1). By

reflexivity of Lt∗(µ), we may pass to a subsequence to ensure that the sequence {FN}N
constructed above converges weakly to some F ∈ Lt∗(µ). Since P t∗(µ) is norm-closed in

Lt∗(µ), it is also weakly closed, and so F ∈ P t∗(µ). The estimate (3.12) shows that {FN}N
is a normal family of analytic functions in D, so by refining the subsequence we may

assume that {FN}N converges pointwise in D. Note that from t∗ > t and the containment

F ∈ P t∗(µ) we obtain that F ∈ P t(µ), since a sequence of analytic polynomials converging

to F in P t∗(µ) converges also to F in P t(µ). We need to verify that F satisfies the

conditions of Lemma 3.1. By property (iii) of Lemma 3.2, we get F (0) = limN FN(0) = 1.

Also, by (3.12) and by letting ϵ → 0, we get |F (z)| = lim supN→∞ |FN(z)| ≤ 1 for z ∈ D.
By the maximum modulus principle, we obtain that F ≡ 1 in D. We see from part (iv) of

Lemma 3.2 that |FN | ≤ 1 on resh(w) and also |FN | → 0 m-almost everywhere on resh(w).

The weak convergence in Lt∗(µ) implies in particular that the restrictions FN |T converge

weakly in Lt∗(w dm), and the weak Lt∗(w dm) limit equals F |T. We readily deduce from

the pointwise convergence of {FN}N to 0 on resh(w) that F ≡ 0 on resh(w). Thus F

satisfies the hypotheses of Lemma 3.1, and our proof is complete. □

3.4. Irreducibility proof. The irreducibility of the first summand on the right hand side

in the displayed equation in Theorem A holds if we assume some additional properties of

h. One of them is

(R3) For some constant C = C(h) we have
∫ a

0
h(x) dx ≤ C · h(a), a ∈ (0, 1).

An easy computation shows that h(x) = x log(e/x) satisfies (R3). The proof of irreducibil-

ity under this assumption is essentially contained in Khrushchev’s article [14] and is stated

without proof in [18]. We need a simple adaptation.

Lemma 3.3 (Khrushchev’s Uniqueness Theorem). Assume that the gauge function

h satisfies the additional condition (R3). Let E ∈ AssocBCh(w) have positive Lebesgue

measure and wE be the restriction of w to E. If {pn}n is a sequence of analytic polynomials,

pn → f in Lt(wE dm), and if the following two conditions hold:
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(i) |pn(z)| ≤ exp
(
ah(1−|z|)

1−|z|)

)
for some a > 0 and for all z ∈ D,

(ii) pn(z) → 0 for z ∈ D,

then f ≡ 0.

Proof. The only technical part of the proof is the estimation of harmonic measure of a

certain domain, which Khrushchev accomplishes in [14, Section 3]. He defines the domain

Ω = D \
(⋃

n B(ℓn)
)
, where B(ℓn) = {z ∈ D : z/|z| ∈ ℓn, |z| > 1 − |ℓn|} is a curvilinear

box, and ℓn is a maximal open interval complementary to E in T. It is not hard to verify

that ∂Ω is a rectifiable Jordan curve.

We denote by ω the harmonic measure in Ω at 0 ∈ Ω. In [14, Proof of Theorem 3.1],

Khrushchev shows that under condition (R3) on h, we have

(3.14)

∫
∂Ω∩D

h(1− |z|)
1− |z|

dω(z) < ∞.

whenever E ∈ BCh. We use this result as a given, and proceed with the rest of the proof.

Introduce the outer function WE in D with the following modulus |WE| on T:

|WE(ζ)| =

1, ζ ∈ T \ E,

min
(
1, (w(ζ))1/t

)
, ζ ∈ E.

(3.15)

Such a function WE exists as a consequence of E ∈ AssocBC(w), since it implies that

for |WE| in (3.15) we have log |WE| ∈ L1(dm). Note that |WE(z)| ≤ 1 for z ∈ D, since
|WE| ≤ 1 on T.

Let z ∈ ∂Ω ∩ D. Then by (i) we have

log+(|WE(z) · pn(z)|) ≤ a
h(1− |z|)
1− |z|

, z ∈ D.

By convergence of {pn}n in Lt(wE dm), and by the inequality |WE|t ≤ w which holds

m-almost everywhere on E, we also have

(3.16) sup
n

∫
E

|WE · pn|t dm ≤ sup
n

∫
E

|pn|tw dm < ∞.

Khrushchev in his proof observes that dω restricted to E is absolutely continuous with

respect to dm, and that dω ≤ dm on E. This follows by monotonicity of the harmonic

measure (see [25, Corollary 4.3.9]) applied to the inclusion Ω ⊂ D. This observation,

together with hypothesis (i), and the estimates (3.14) and (3.16), implies that

sup
n

∫
∂Ω

log+(|WE · pn|) dω < ∞.
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If ϕ : D → Ω is a conformal map fixing the origin, then a change of variables and the

conformal invariance of harmonic measure, namely dm = d(ω ◦ ϕ), shows that

sup
n

∫
T
log+(|WE ◦ ϕ) · (pn ◦ ϕ)|) dm < ∞.

The rectifiability of ∂Ω implies that ϕ is conformal at m-almost every point on T (see [8,

VI.1]) which implies that |(WE ◦ϕ) · (pn ◦ϕ)| coincides m-almost everywhere with the non-

tangential boundary values of the bounded functions (WE ◦ϕ) · (pn ◦ϕ) defined in D. Hence
the finiteness of the supremum above shows that {(WE◦ϕ)·(pn◦ϕ)}n is a bounded subset of

the Nevanlinna class in D. Since after passing to a subsequence we may assume that pn → f

almost everywhere on E, we may also assume that (WE◦ϕ)·(pn◦ϕ) → (WE◦ϕ)·(f◦ϕ) almost

everywhere on Ẽ = ϕ−1(E). We have |Ẽ| > 0 since |Ẽ| = ω(E) > 0 as a consequence of

ω and arclength measure on ∂Ω being mutually absolutely continous (see [9, VI.1.2]). We

are now in the setting of the classical Khinchin-Ostrowski theorem [10, Part II, 2.3]). This

theorem implies that (WE ◦ ϕ) · (f ◦ ϕ) ≡ 0 as a consequence of (WE ◦ ϕ) · (pn ◦ ϕ) → 0

pointwise on D, which follows by our hypothesis (ii). Hence f ≡ 0, since |WE| > 0

m-almost everywhere on E. □

To apply Lemma 3.3 in the setting of P t(µ) spaces, we need a bound of the form

(3.17) |p(z)| ≤ C exp
(
a
h(1− |z|)
1− |z|)

)
where p is a polynomial and C > 0 is a constant depending only on the norm of p in

P t(µ). If the bound exists then any sequence {pn}n of polynomials in P t(µ) converging

to an element f ∈ P t(µ) with f |D ≡ 0 satisfies the assumptions of Lemma 3.3 for every

E ∈ AssocBCh(w), |E| > 0. The conclusion is that f |E ≡ 0, and since a countable union

of sets in AssocBCh(w) constitutes a carrier for wc, we deduce that f |T ≡ 0 as an element

of Lt(wc dm). Thus f ≡ 0 in P t(µ) if w is residual-free, in the sense that w = wc. This

establishes irreducibility of P t(GahdA + wc dm) for any h admitting a bound of the form

(3.17).

In the case that h has the form (1.4), the bound (3.17) reduces to

|p(z)| ≤ C(1− |z|)−a

for some a > 0. A well-known estimate in Bergman spaces states that

|p(z)| ≲
(∫

D
|pn|tdAα

)1/t
· (1− |z|)−a, z ∈ D

for some a = a(α, t) > 0 (see, for instance, [5, Theorem 1 of Chapter 3]). Thus for µ of

the form (1.2), a convergent sequence of polynomials {pn}n in P t(µ) satisfies assumption



24 BARTOSZ MALMAN

(i) in Lemma 3.3, and our discussion in the previous paragraph gives us the irreducibility

of the piece P t(dAα + wc dm) in the decomposition in Theorem A. This finishes the proof

of that result.

Although we shall not explicitly verify the conditions, we mention that the regularity

conditions (R1), (R2) and (R3), and the estimate (3.17), hold for the particular choice

h(x) = xβ for any β ∈ (0, 1). As a consequence, the following variant of Theorem A holds.

Theorem. Let h(x) = xβ for some β ∈ (0, 1), and let µ have the form (3.1) for some

a > 0. For any t ∈ (0,∞), we have

P t(µ) = P t(GahdA+ wc dm)⊕ Lt(wr dm)

where

wc = w|coreh(w), wr = w|resh(w)

and P t(GahdA+ wc dm) is irreducible.

4. Permanence of singular measures living on associated sets

4.1. The goal. The result to be proved in this section applies strictly to measures µ of

the form (1.2), and not to the class (3.1). We shall not go into further details regarding

the generality in which the argument given below applies, but we wish to mention that the

choice h(x) = xβ, β ∈ (0, 1), leads to some issues in the proof.

Proposition 4.1 (Permanence of singular inner factors). Let µ be of the form (1.2).

If t ∈ (0,∞), P t(µ) is a space of analytic functions and Sν is a singular inner function for

which the corresponding singular measure ν is supported on a set E ∈ AssocBC(w), then
any function h ∈ [Sν ] ∩H∞ satisfies h/Sν ∈ H∞.

The result is a type of indestructibility property (the term was coined in [11]) of Sν under

convergence in P t(µ) norms. In relation to Theorem B, it shows the necessity of vanishing

of ν on associated sets for cyclicity of Sν .

As remarked in the Introduction, the case t = 2 of Proposition 4.1 has been established

in [21]. The proof given there essentially involves a functional analytic argument. The

proof of the proposition in the general case, which we will present here, involves a simple

extension to associated sets of an argument in [4] by Berman, Brown and Cohn which

applies to BC sets of Lebesgue measure zero. Before explaining their work, let us state two

lemmas which we will use at a later stage in the proof. The first of them is the permanence

property in Ht.
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Lemma 4.2. Assume that {fn}n is a sequence of functions in Ht = P t(dm), satisfying

sup
n

∫
T
|fn|t dm < ∞.

Let f ∈ Ht, and assume that Sνfn → f pointwise in D. Then f/Sν ∈ Ht.

The claim is certainly true for t = 2. In that case, we may extract a weakly convergent

subsequence of {Sνfn}n, which must converge to a function in the closed subspace SνH2.

Then f ∈ SνH2, so that f/Sν ∈ H2. For t ̸= 2, we may reduce to the previous case by

multiplying the sequence {fn}n by appropriate outer factors. For details, we refer to [19,

proof of Theorem 1.4].

Lemma 4.3. Let F be a bounded outer function. If ϕ : D → D is analytic, then F ◦ ϕ is

outer.

Proof. A bounded analytic function F in D is outer if and only if a sequence {hn}n of

functions hn ∈ H∞ exists for which we have the convergence hnF → 1 pointwise in D and

a uniform bound supz∈D |F (z)hn(z)| < C independent of n. If ϕ is as in the lemma, then

for h∗
n := hn ◦ ϕ ∈ H∞ we have that h∗

n · (F ◦ ϕ) converges pointwise to 1 in D and satisfies

the mentioned bound. So F ◦ ϕ is outer. □

4.2. A subdomain of the disk. In [4], the authors use a subdomain Ω of D with smooth

boundary ∂Ω which satisfies ∂Ω∩T = E. If {ℓn}n is the sequence of maximal open intervals

complementary to E on T, and an, bn are the endpoints of the interval ℓn, then they define

the curve γ ⊂ D ∪ T by

γ =
{
(1− r(t))eit : t ∈ [0, 2π)

}
where r(t) is chosen so that r(t) ≃ c(dist(eit, E))2. The constant c > 0 is soon to be

specified. More precisely, we will set r(t) = 0 if eit ∈ E and otherwise

r(t) = c
|an − eit|2|bn − eit|2

|ℓn|2
, eit ∈ ℓn.

The domain Ω is defined to be the interior of the curve γ. The choice of the function

r makes ∂Ω = γ smooth enough to apply Kellogg’s theorem, [9, Theorem II.4.3], which

asserts that any conformal mapping ϕ : D → Ω has a derivative ϕ′ which extends to a

continuous non-vanishing function on T. We will fix ϕ which satisfies ϕ(0) = 0.

An important property of Ω is that if the singular measure ν is supported on E, then

Sν is bounded from below on D \ Ω. To see this, note first that for any z ∈ D \ Ω

and z∗ := z/|z| ∈ T \ E we have that Sν is holomorphic in a neighbourhood of z∗, and
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|Sν(z
∗)| = 1. Secondly, the explicit formula (1.1) and the chain rule imply that for z ∈ D

we have

|S ′
ν(z)| =

∣∣∣ ∫
E

2ζ

ζ − z
dν(ζ)

∣∣∣|Sν(z)|

≤ 2ν(T) · dist(z, E)−2.

Thirdly, if z ̸∈ Ω, then the distance between z and z∗ is dominated by a constant multiple

of c(dist(z∗, E))2. Finally, consider any w ∈ D \ Ω and let L be the straight line segment

between w and w∗ = w/|w| ∈ T. For any z ∈ L, we have also that dist(z, E) domi-

nates a constant multiple of dist(z∗, E) = dist(w∗, E). Using in combination our above

observations, we obtain that

1− |Sν(w)| ≤ |Sν(w
∗)− Sν(w)|

=
∣∣∣ ∫

L

S ′
ν(z) dz

∣∣∣
≲
∫
L

(dist(z, E))−2|dz|

≲ |w − w∗|(dist(w∗, E))−2

≲ c.

It follows that we may choose c > 0 small enough to ensure that

(4.1) |Sν(z)| > 1/2, z ∈ D \ Ω.

4.3. Singular factor of Sν ◦ ϕ. The non-vanishing condition on ϕ′|T allows the authors

in [4] to conclude that the function Sν ◦ ϕ has a non-trivial singular inner factor.

Lemma 4.4. The composed function Sν ◦ ϕ : D → D has the inner-outer factorization

Sν ◦ ϕ = θ · U,

where θ is a non-trivial singular inner function, and U is an outer function bounded from

above and below in D.

Proof. The non-triviality of θ is a consequence of [4, Theorem 2.1]. We clearly have |U | =
|Sν ◦ ϕ| ≤ 1 in D, so it remains to verify that U is bounded from below in D. Since

U is outer, this we can do by showing that |U | is essentially bounded from below on T.
Certainly we have |U | = 1 m-almost everywhere on ϕ−1(E), for ϕ respects subsets of full

m-measure in E and ϕ−1(E), and so for m-almost every w = ϕ(z) ∈ E and m-almost every

z ∈ ϕ−1(E) we have

1 = |Sν(w)| = |θ(z) · U(z)| = |U(z)|.
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If z ∈ T \ϕ−1(E), then w = ϕ(z) ∈ D∩ ∂Ω, and so |Sν(w)| > 1/2 according to Section 4.2.

Therefore

|U(z)| ≥ |θ(z) · U(z)| = |Sν(w)| > 1/2.

□

4.4. Proof of the permanence property. In the notation of Proposition 4.1, the func-

tion h/Sν is bounded outside of Ω as a consequence of (4.1). What remains to be shown

is that it is bounded inside of Ω also. Because h ∈ [Sν ], there exists a sequence {pn}n of

polynomials for which Sν ·pn → h in the norm of P t(µ). In particular, we have convergence

pointwise for every z ∈ D. If the composed sequence (Sν ◦ϕ) · (pn ◦ϕ) were bounded in the

norm of Ht, then in the notation of Lemma 4.4 we could conclude that (h◦ϕ)/θ ∈ H∞, and

consequently h/Sν would be bounded in Ω. We can’t quite obtain the desired norm bound

for (Sν ◦ ϕ) · (pn ◦ ϕ), but we can after a multiplication of the sequence with appropriate

outer functions.

We introduce the outer function FE satisfying the following equality m-almost every-

where on T:

|FE(ζ)| =

dist(ζ, E), ζ ∈ T \ E,

1, ζ ∈ E.
(4.2)

That is,

FE(z) = exp
(∫

T\E

ζ + z

ζ − z
log dist(ζ, E) dm(ζ)

)
, z ∈ D.

The convergence of the integral in the definition of FE is assured as a consequence of

log dist(ζ, E) ∈ L1(dm) for sets E ∈ BC and a short computation showing that∫
ℓ

log dist(ζ, E)dm(ζ) ≃ |ℓ| log(e/|ℓ|)

for short enough maximal intervals ℓ complementary to T. Note that by adding finitely

many points to E, we may ensure that the complementary intervals ℓ have a length bounded

from above by any desired small constant. The operation of adding finitely many points

to E clearly does not affect its membership in AssocBCh(w).

If w ∈ ∂Ω ∩ D, then w∗ = w/|w| ∈ T \ E, and by construction of Ω we have, for some

constant c > 0,

(4.3) dist(w,w∗) = 1− |w| ≃ (dist(w∗, E))2.
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The harmonic measure in D at w of the interval Iw of length (1 − |w|)/2 centered at w∗,

namely ∫
Iw

1− |w|2

|ζ − w|2
dm(ζ),

is then readily seen to be bounded from below independently of w, say by δ > 0. If the

complementary interval ℓ containing w∗ is sufficiently short, then by (4.3) we have

1− |w|
2

≤ dist(w∗, E).

Thus, by the remark in previous paragraph, we may assume that Iw does not intersect E.

By this observation and (4.3), we conclude that for every ζ ∈ Iw, we have the estimate

FE(ζ) = dist(ζ, E) ≤ dist(w∗, E) +
1− |w|

2
≲
√

1− |w|.

So, since |FE| is bounded in D, we obtain from the well-known Two Constants Theorem

that

(4.4) |FE(w)| ≲
(
sup
ζ∈Iw

|FE(ζ)|
)δ

≲ (1− |w|)δ/2, w ∈ ∂Ω ∩ D.

By replacing FE by a positive power of itself, we may replace δ/2 above by a positive

number arbitrarily large.

Proof of Proposition 4.1. Assume that h ∈ [Sν ]∩H∞, and that Sν ·pn → h in P t(µ), {pn}n
being a sequence of polynomials. Since µ has form (1.2), the convergence implies that we

have the two bounds

sup
n

∫
D
|Sν · pn|tdAα < ∞

and

(4.5) sup
n

∫
T
|Sν · pn|tw dm < ∞.

The first of the two bounds implies the growth estimate

|Sν(z) · pn(z)| ≤
C

(1− |z|)B
, z ∈ D

with constants B,C > 0 independent of n (see [5, Theorem 1 of Chapter 3]). As a

consequence of (4.4), or more precisely as a consequence of the comment immediately

following that equation, we may assume that

sup
z∈∂Ω∩D

|FE(z) · Sν(z) · pn(z)| ≤ 1.

Recall the definition of the outer function WE in (3.15). If |E| = 0 then WE reduces to

the constant 1, and in that case WE plays no role in the following estimates. In any case,
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as a consequence of the inequality |WE| ≤ w1/t which holds m-almost everywhere on E,

the second bound (4.5) tells us that

sup
E

∫
E

|WE · Sν · pn|t dm < ∞.

The bound holds trivially if |E| = 0, of course. Since ∂Ω = E∪(∂Ω∩D), the two estimates

imply

sup
n

∫
∂Ω

|FE ·WE · Sν · pn|tds < ∞,

where ds denotes the arclength element on ∂Ω. Setting

gn := FE ·WE · Sν · pn ∈ H∞

and changing variables, we obtain

sup
n

∫
T
|gn ◦ ϕ|t|ϕ′|dm < ∞

where ϕ : D → Ω is the earlier introduced conformal map. Since |ϕ′| is bounded from below

on T, we obtain that {gn ◦ ϕ}n is a bounded subset of the Hardy space Ht. The pointwise

convergence Sν ·pn → h in D implies that gn◦ϕ → (FE ·WE ·h)◦ϕ in D, and since gn◦ϕ has

θ as an inner factor according to Lemma 4.4 (more precisely, we mean that the quotient

of gn ◦ ϕ and θ is bounded in D), so does (FE ·WE · h) ◦ ϕ, this time by Lemma 4.2. The

functions FE ◦ ϕ and WE ◦ ϕ are outer by Lemma 4.3. Hence actually h ◦ ϕ has the inner

factor θ. In notation of Lemma 4.4, the function
h ◦ ϕ
θ

=
(h ◦ ϕ) · U

θ · U
is bounded in D,

which is equivalent to
h · (U ◦ ϕ−1)

Sν

being bounded in Ω. Since U is bounded from below,

h/Sν is bounded in Ω. By an earlier remark, h/Sν is bounded in D\Ω, and so h/Sν ∈ H∞.

The proof is complete. □

5. Cyclicity of singular inner functions

5.1. The goal. The result to be proved in this section is the sufficiency part of Theorem B,

and also the following variant.

Proposition 5.1 (Main Cyclicity Result). Let µ be of a measure of the form (3.1). If

t ∈ (0,∞), P t(µ) is a space of analytic functions, and Sν is a singular inner function for

which the corresponding singular measure satisfies

(5.1) ν(E) = 0, E ⊂ AssocBCh(w),

then Sν is cyclic in P t(µ).

We make a few remarks before proceeding with the proof.
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• It suffices to prove the result for large t > 1. Indeed, if t1 < t2 and Sν is cyclic in

P t2(µ), then denoting by ∥ · ∥µ,t the norm in Lt(µ), there exists a sequence {pn}n
of polynomials such that ∥Sνpn − 1∥µ,t2 → 0. By Jensen’s inequality applied to the

convex function x 7→ xt2/t1 and a normalized version of the measure µ, we obtain

readily that ∥Sνpn − 1∥µ,t1 → 0. In particular, we may in our proofs work in the

more convenient reflexive range t ∈ (1,∞). It is worth noting here that increasing

the parameter t does not affect analyticity of the space P t(µ). To see this, note

that if P t2(µ) is not analytic, and so contains a function f satisfying f |D ≡ 0, then

whenever t1 < t2, we have also that f ∈ P t1(µ), and consequently P t1(µ) is not

analytic either. In fact, for most natural gauge functions h, such as the one in

(1.4), it is a consequence of Theorem A, or the variants presented in Section 3.4,

that analyticity of P t(µ) is independent of the choice of the parameter t, since it is

decided entirely by the structure of the weight w appearing in (1.2) or (3.1).

• It suffices to show that S
1/B
ν is cyclic in P t(µ) for some positive integer B. Indeed,

if m1 and m2 are two cyclic bounded functions, then so is their product. The claim

follows from the estimate

∥m1m2pq − 1∥µ,t ≤ ∥m2q − 1∥µ,t · ∥m1p∥∞ + ∥m1p− 1∥µ,t

where p and q are polynomials. If m1 is cyclic, we may choose p to make the second

term on the right-hand side small. Having fixed p, if m2 s cyclic we may choose q

to make the first term on the right-hand side small. Cyclicity of m1m2 follows.

• We emphasize again that the necessity for cyclicity of Sν of vanishing of ν on

associated set has been established in Section 4 only for the case of measures µ of

the form (1.2). In particular, the converse has not been established in the context

of more general gauges h. Thus we make no claims regarding the necessity of the

vanishing condition in Proposition 5.1.

5.2. Modification of Korenblum’s linear program. Let ν be a finite non-negative

singular Borel measure on T, and set

(5.2) ν0 =: ν − ν(T)dm.

Let N be a positive integer, and {Is}Ns=1 be a partition of T into the half-open intervals

Is := {eit : 2π(s− 1)/N ≤ t < 2πs/N}, s = 1, . . . , N.
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Note that the partition depends on the choice of N , but for convenience we suppress this

in our notation. We introduce a notation for unions of consecutive intervals Is as follows:

(5.3) Ik,l =
l⋃

s=k

Is.

As before, we set

R = log+(1/w).

We will study a variant of Korenblum’s linear program in [16, Equation 3.6]. Our

program, with real unknowns xs, s = 1, . . . , N , is as follows:

(5.4)



−ν0(Ik,l) +
l∑

s=k

xs ≤ ϵ · h(|Ik,l|),

l∑
s=k

xs ≤ M(A · h,R|Ik,l),

N∑
s=1

xs = 0.

The notation R|I stands for the restriction of R to the interval I, interpreted as before

to vanish outside of the interval I. The quantities ϵ and A are positive numbers. The most

significant difference between (5.4) and the linear program in [16] is the appearance of the

Hausdorff functional M(A · h,R|Ik,l) in our version, in the place where in Korenblum’s

original program the quantity h(|Ik,l|) is present. In accordance with the presentation of

Korenblum’s theorem in the book by Hedenmalm, Korenblum and Zhu in [11], we will

say that the program is consistent if for every choice of ϵ > 0 there exists a choice of

A = A(ϵ) > 0 for which the linear program (5.4) has a solution {xs}Ns=1 for any N > 0.

Otherwise, the program is inconsistent, in which case there exists a fixed ϵ > 0 such that

for any choice of A > 0 the program fails to have a solution for some N = N(A).

Our purpose in the rest of the section is to establish two claims. The first claim is that

if the program (5.4) is consistent, then Sν is cyclic in the corresponding P t(µ) space. The

second claim is that if (5.4) is inconsistent, then ν(E) > 0 for some set E ∈ AssocBCh(w).

If the claims are established, then it follows from the first claim that if Sν is not cyclic

in P t(µ), then the program is inconsistent, and consequently from the second claim we

obtain ν(E) > 0 for some E ∈ AssocBCh(w). Thus Proposition 5.1 and the sufficiency

part of Theorem B are consequences of these two claims. Our proofs will use adaptations
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of Korenblum’s technique from [16], with the main new ideas relating to the way in which

the functional M(h,R) enters the picture.

5.3. Sufficiency of consistency for cyclicity. We are assuming that the program is

consistent. We fix a small ϵ > 0 and are given a corresponding A = A(ϵ) > 0 for which the

system in (5.4) has a solution {xs}Ns=1 for every N .

5.3.1. Construction of a partial solution. From a solution {xs}Ns=1 we construct a bounded

function fϵ,N : T → R according to the formula

(5.5) fϵ,N = ν(T) +
N∑
s=1

gs,

where gs is supported on the interval Is. If xs ≤ 0, we set gs to be constant on Is so that∫
Is
gs dm = xs. If xs > 0, then the second inequality in (5.4) implies that

xs ≤ M(A(ϵ) · h,R|Is),

and so by Proposition 2.1 there exists a bounded non-negative function g∗s supported on Is

which satisfies the pointwise inequality g∗s ≤ R, the upper estimate
∫
I
g∗s dm ≤ A(ϵ) · h(|I|)

for all intervals I ⊂ T, and the equality
∫
Is
6g∗s dm = xs. We set gs := 6g∗s . Then, for every

s ∈ {1, . . . , N} we have that

• gs ≤ 6R pointwise on T,
•
∫
I
gs dm ≤ 6A(ϵ) · h(|I|) for every interval I ⊂ T,

•
∫
Is
gs dm = xs.

We use the last two of the above three properties to establish the following lemma.

Lemma 5.2. In the notation as above, for every interval I ⊂ T we have the estimate∫
I

fϵ,N dm ≤ 26A(ϵ) · h(|I|) + ν(T)|I|

Proof. Assume for the moment that I does not include the point 1 ∈ T in its interior. Let

{Is}ls=k be those intervals in the partition of T corresponding to N that intersect I. For

the first interval Ik, the second point above implies that we have the estimate∫
Ik∩I

fϵ,N dm =

∫
Ik∩I

gk dm+ ν(T)|Ik ∩ I|

≤ 6A(ϵ) · h(|I ∩ Ik|) + ν(T)|Ik ∩ I|

≤ 6A(ϵ) · h(|I|) + ν(T)|Ik ∩ I|.
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For the last interval Il, we similarly have∫
Il∩I

fϵ,N dm ≤ 6A(ϵ)h(|I|) + ν(T)|Il ∩ I|.

For the union of intervals Is contained inside I (if any), we use the third point above and

the second inequality in (5.4) to obtain∫
Ik+1,l−1

fϵ,N dm =
l−1∑

s=k+1

xs + ν(T)|Ik+1,l−1|

≤ M(A(ϵ) · h,R|Ik+1,l−1) + ν(T)|Ik+1,l−1|

≤ A(ϵ) · h(I) + ν(T)|Ik+1,l−1|,

the last inequality following easily from the definition of the Hausdorff functional in (2.2).

By adding our three estimates, we obtain that
∫
I
fϵ,N dm ≤ 13A(ϵ) · h(|I|) + ν(T)|I|, if I

does not contain the point 1 in its interior. If it does, then we may express I as a union

of two intervals, none of which contains the point 1 in its interior, and apply the already

established estimate to the two parts. □

We note that in the estimate in Lemma 5.2 it is A(ϵ) that is the dominating quantity,

and that we lack control on its size. We may therefore think of the right-hand side in the

inequality in Lemma 5.2 as A′(ϵ) · h(|I|), where A′(ϵ) is a large quantity comparable to

A(ϵ).

5.3.2. Limiting argument. At this point we will introduce a premeasure which is a weak-

type limit of a subsequence of {fϵ,N}N . Premeasures are set functions defined on the

algebra of intervals of T. Their basic properties are explained in Appendix A and will be

used frequently below.

By the definition of fϵ,N in (5.5), properties of gs listed just before Lemma 5.2, and

the third equation in (5.4), the sequence {fϵ,N}N differs from a sequence of normalized

premeasures only by the constant ν(T)dm (see Definition A.1 in Appendix A). Applying

Lemma A.4 combined with Lemma 5.2 we conclude that we may let N → ∞ along a

sequence and assume that we have the convergence

(5.6) fϵ,N − ν(T)dm → fϵ − ν(T)dm

in the sense stated in Lemma A.4. Here fϵ is a premeasure and not a function, and

fϵ(T) = ν(T).

Lemma 5.3. In the notation as above, we have the estimate

(5.7) −ν(I) + fϵ(I) ≤ ϵ · h(|I|)
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for each interval I ⊂ T.

The corresponding statement in Korenblum’s paper [16] is left without proof. We fill in

the details, which requires us to use some specific properties of premeasures stated in the

Appendix A.

Proof of Lemma 5.3. The estimate follows from the convergence in (5.6). Without loss of

generality, we may assume that the partitions of T associated to larger N are refinements of

those associated to smaller N . It follows that for any δ > 0 there exists a half-open interval

I ′ which is a union of intervals in any partition {Is}Ns=1 associated to N large enough, for

which the following four statements hold:

• the jumps Jρσ(t), Jρσ(t
′) defined in (A.3) corresponding to the endpoints eit, eit

′
of

I ′ are smaller than δ,

• |fϵ(I ′)− fϵ(I)| ≤ δ,

• |ν(I ′)− ν(I)| < δ,

•
∣∣|I ′| − |I|

∣∣ < δ.

All four parts can be ensured by choosing I ′ to be the interval obtained from I by a small

perturbation of its endpoints. The first point can be ensured by Lemma A.3, and the

second and third points can be ensured by properties (P2) and (P3) of premeasures stated

in Definition A.1. Then from the first inequality in (5.4), our definitions (5.2) and (5.5),

the pointwise convergence property in (A.5), and the first bullet point above, we obtain

−ν(I ′) + fϵ(I
′) = −ν(I ′) + ρfϵ(t

′)− ρfϵ(t)

≤ −ν(I ′) + lim sup
N→∞

(
ρfϵ,N (t

′)− ρfϵ,N (t)
)
+ 2δ

= −ν(I ′) + lim sup
N→∞

∫
I′
fϵ,N dm+ 2δ

= −ν0(I
′) + lim sup

N→∞

∑
s:Is⊂I′

xs + 2δ

≤ ϵ · h(|I ′|) + 2δ.

It follows from the last three bullet points above that

−ν(I) + fϵ(I) ≤ 4δ + ϵ · h(|I|+ δ).

By letting δ → 0 we obtain (5.7). □
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5.3.3. A candidate solution. In order to prove cyclicity of Sν we should construct a candi-

date function F for which SνF approximates the constant function 1 in P t(µ). Set

(5.8) Fϵ(z) := exp
(∫

[0,2π)

eit + z

eit − z
dfϵ(e

it)
)
, z ∈ D,

the integral being defined in the sense of premeasures as in (A.4) and the following discus-

sion. We have

|Sν(z)Fϵ(z)| = exp
(∫

[0,2π)

Pz(e
it)d[−ν + fϵ](e

it)
)
, z ∈ D,

where Pz is the Poisson kernel in (A.8). From a combination of Lemma 5.3 and the Poisson

integral estimate (A.9) in Appendix A, we obtain

(5.9) |Sν(z)Fϵ(z)| ≤ exp
(
Cϵ

h(1− |z|)
1− |z|

)
, z ∈ D,

where C > 0 is a constant independent of ϵ. This implies that

lim sup
ϵ→0

|Sν(z)Fϵ(z)| ≤ 1, z ∈ D

and that

lim sup
ϵ→0

∫
D
|SνFϵ|tGahdA < ∞

for any a > 0 (recall the definition of Gah in (3.1)). Since Sν(0)Fϵ(0) = 1, it follows that

as ϵ → 0, the functions Sν(z)Fϵ(z) converge to 1 uniformly on compact subsets of D (more

precisely, we need to let ϵ → 0 along an appropriate sequence). To conclude that Sν is

cyclic in P t(µ), we still lack something. Firstly, it is not clear if we have a norm bound on

SνFϵ in P t(µ), since the measure µ involves a part on the boundary T also. Secondly, we

do not know if SνFϵ is a member of [Sν ], the Mz-invariant subspace generated by Sν , or

even if it is a member of P t(µ).

5.3.4. Absorption into the invariant subspace. We may assume that 6t is an integer by the

first remark following Proposition 5.1. We are also assuming that t > 1, so that P t(µ) is

reflexive, and in particular, any norm bounded sequence of functions in the space has a

subsequence converging weakly to an element of the space. The analyticity assumption on

P t(µ) implies that any f ∈ P t(µ) is uniquely determined by f |D, and will otherwise not

play any role in the proofs.

According to the second remark following Proposition 5.1, it will suffice to show that

S
1/6t
ν = Sν/6t is cyclic in P t(µ). To ease the notation, we divide all the appearing measures

and premeasures by the factor 6t, and make the notational replacements ν → ν/6t, fϵ,N →
fϵ,N/6t and fϵ → fϵ/6t. Since 6t > 0, all our previous estimates are valid (such as the
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ones in Lemma 5.2 and Lemma 5.3) with new constants comparable to the old ones. In

particular, after this notational replacement, we now have on T the pointwise estimate

(5.10) fϵ,N ≤ R/t+ ν(T)/6t ≤ R/t+ 1

(recall (5.5), the listed properties of gs right before the statement of Lemma 5.2, and

increase t slightly to make ν(T )/6t ≤ 1).

Set

(5.11) Fϵ,N(z) := exp
(∫

[0,2π)

eit + z

eit − z
fϵ,N(e

it)dm(eit)
)
, z ∈ D.

We note that, since the functions fϵ,N are bounded, the sequence {Fϵ,N}N consists of

functions inH∞, and so in particular Fϵ,N ∈ P t(µ). We have also the pointwise convergence

Fϵ,N(z) → Fϵ(z) for z ∈ D by the convergence fϵ,N → fϵ in the sense of Lemma A.4.

We establish now some estimates uniform in N . From Lemma 5.2 and the estimate (A.9)

we deduce

(5.12) |Fϵ,N(z)| ≤
(
A′(ϵ)

h(1− |z|)
1− |z|)

)
, z ∈ D

where A′(ϵ) is some large positive constant comparable to A(ϵ). In the case µ has form

(3.1) for some a > 0, take a positive integer D = D(ϵ) so large that we have

(5.13) |Fϵ,N(z)|t/D ≤ exp
(
(a/2)

h(1− |z|)
1− |z|)

)
, z ∈ D.

In the case that µ has the form (1.2) for some α ∈ (−1, 0] (and so h is given by (1.4)), fix

a small δ > 0 for which we have α− 2δ > −1, and let D = D(ϵ) > 0 be a positive integer

so large that

|Fϵ,N(z)|t/D = exp
(
(A′(ϵ)/D)

h(1− |z|)
(1− |z|)

)
(5.14)

=
( e

1− |z|

)A′(ϵ)/D

≤
( e

1− |z|

)δ
, z ∈ D.

The fact that SνFϵ is contained in the invariant subspace [Sν ] can be established by

using the above estimates and a standard technique of absorbing the function SνFϵ into

[Sν ] piece by piece.

Lemma 5.4. In the notation as above, we have that SνF
k/D
ϵ is contained in [Sν ] for each

integer k = 0, 1, . . . , D. In particular, SνFϵ is contained in [Sν ]. Moreover, we have

lim sup
ϵ→0

∥SνFϵ∥µ,t < ∞.
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Proof. We first carry out the proof in the context of measures of the form (3.1), the other

case being similar and treated afterwards. The proof will proceed by induction on k, with

the base case k = 0, corresponding to Sν ∈ [Sν ], being trivial. Let us then assume that

k < D and that the claim holds for k. We will show that it holds also for k + 1.

Using the inequalities |Sν(z)| ≤ |Sν(z)|k/D, Cϵtk/D < a/2 (which holds for sufficiently

small ϵ) and (5.9), we obtain, for z ∈ D, the estimate

|Sν(z)F
k/D
ϵ (z)|t ≤ |Sν(z)Fϵ(z)|tk/D

≤ exp
(
(Cϵtk/D)

h(1− |z|)
1− |z|

)
,

≤ exp
(
(a/2)

h(1− |z|)
1− |z|

)
= Gah(z)

−1/2.

Combined with (5.13), we conclude that for small ϵ we have the bound

(5.15) |Sν(z)F
k/D
ϵ (z)F

1/D
ϵ,N (z)|tGah(z) ≤ 1

which gives uniform norm boundedness of the sequence {SνF
k/D
ϵ F

1/D
ϵ,N }N in Lt(GahdA).

The norm bound is independent of ϵ, as long as ϵ is sufficiently small. Let now C = {z ∈
T : w(z) > 0} be the natural carrier set of w, and introduce the set

C := {G ∈ P t(µ) : |G| ≤ exp(R/Dt+ 1/D)m-a.e on C}.

It is easy to see that C is convex. It is also closed in the norm topology of P t(µ), since

if {Gn}n is a sequence in C converging in norm to G, then a subsequence {Gnk
}k may be

extracted which converges pointwise to G on a set of full m-measure in the carrier C. It

follows that C is weakly closed, by basic functional analysis. From the definition of Fϵ,N

in (5.11) and the inequality (5.10) we deduce that F
1/D
ϵ,N ∈ C. Keeping in mind also that

R = log+(1/w), and that we have the estimate (5.13), we deduce easily that {F 1/D
ϵ,N }N is

a norm bounded sequence in P t(µ). Therefore F
1/D
ϵ ∈ C, since F

1/D
ϵ is a pointwise limit

in D of {F 1/D
ϵ,N }N , and any weakly convergent subsequence of {F 1/D

ϵ,N }N must necessarily

converge to an element of C. On T we have |Sν | = 1, and it follows from the membership

of F
1/D
ϵ,N and F

1/D
ϵ in C that on the carrier set C of w we have the pointwise inequalities

|SνF
k/D
ϵ F

1/D
ϵ,N |tw ≤ et · exp(R(k + 1)/D)w

≤ et(1 + w−(k+1)/D)w

≤ et(1 + 2w) ∈ L1(dm).
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By combining the above estimate with (5.15), we obtain

(5.16) sup
N

∥SνF
k/D
ϵ F

1/D
ϵ,N ∥µ,t < ∞

with the estimate being uniform also in ϵ small enough. Since F
1/D
ϵ,N ∈ H∞, and by induction

hypothesis SνF
k/D
ϵ is contained in [Sν ], by weak compactness of P t(µ) (recall t > 1) we

obtain that SνF
(k+1)/D
ϵ is also contained in [Sν ], with norm ∥SνF

(k+1)/D
ϵ ∥µ,t not larger than

the supremum on the left-hand side in (5.16).

The proof in the case (1.2) and α ∈ (−1, 0] is similar. By (5.9), and an argument similar

to the one given at the beginning of this proof, we obtain for ϵ small enough the estimate

|Sν(z)F
k/D
ϵ (z)|t ≤

( e

1− |z|

)δ
, z ∈ D.

Hence by (5.14) it holds that

|Sν(z)F
k/D
ϵ (z)F

1/D
ϵ,N (z)|t(1− |z|)α ≤ 3 · (1− |z|)α−2δ ∈ L1(dA),

where the last inclusion holds as a consequence of the inequality α − 2δ > −1. Thus we

have also in this case the corresponding norm boundedness of {SνF
k/D
ϵ F

1/D
ϵ,N }N in Lt(dAα).

The rest of the proof is the same as in the case of measures of the form (3.1). □

According to the discussion in Section 5.3.3, we have now shown that consistency of

the linear program (5.4) implies the cyclicity of the singular inner function Sν in P t(µ).

Indeed, we conclude from that discussion and the above lemma that for small ϵ > 0 the

norm bounded family {SνFϵ}ϵ of members of [Sν ] has the constant function 1 as a weak

cluster point. So 1 ∈ [Sν ], and Sν is cyclic.

5.4. Necessity of consistency for cyclicity. According to what was said in the last

paragraph of Section 5.2, in order to complete the proofs of Theorem B and Proposition 5.1,

we now need to show that if the linear program (5.4) is inconsistent, then there exists an

associated set E for which ν(E) > 0.

5.4.1. The Inconsistency Inequality. We start the necessity proof in the same way as Ko-

renblum started his proof in [16] by deriving an inequality from the inconsistency of the

linear program.

Note that the first two inequalities in (5.4) may be written as a single inequality in the

following way:

−ν0(Ik,l) +
l∑

s=k

xs ≤ min
(
− ν0(Ik,l) +M(A · h,R|Ik,l), ϵ · h(|Ik,l|)

)
.
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Only for a moment, let us denote the right-hand side of this inequality by bk,l, and think

of ys = −ν0(Is) + xs as the unknowns in a new linear program. Note that
∑N

s=1 ys = 0 if

and only if
∑N

s=1 xs = 0, since ν0 is normalized and additive. The proof of the following

duality lemma for linear programs appears in [11, Lemma 7.7], where Korenblum’s work

on cyclic vectors is presented. The lemma appears implicitly in the work of Korenblum in

[16].

Lemma 5.5. Let N be a fixed positive integer, and bk,l be real numbers, 1 ≤ k ≤ l ≤ N .

The system of inequalities
l∑

s=k

ys ≤ bk,l

subject to the constraint
∑N

s=1 ys = 0 is solvable if and only if

m∑
i=1

bki,ki+1−1 ≥ 0

for every increasing sequence {ki}m−1
i=1 of integers, ki ∈ [1, . . . , N ], where k1 = 1 and km =

N + 1.

Note that the sequence {ki}mi=1 in the statement of the lemma partitions the set of

integers [1, . . . , N ] into m − 1 ”intervals” [ki, ki+1 − 1]. Such partitions are called simple

coverings in [11] and [16]. A simple covering corresponds to a covering of the circle T by

a finite number of half-open intervals {Ji}m−1
i=1 as in (5.3), where we use the notation

Ji = Iki,ki+1−1.

Then by our above discussion and Lemma 5.5 we see that inconsistency of the system (5.4)

implies that there exists ϵ > 0 such that to every choice of A there corresponds a covering

{Ji}i of T consisting of half-open intervals, which satisfies

(5.17)
∑
i

min
(
− ν0(Ji) +M(A · h,R|Ji), ϵ · h(|Ji|)

)
< 0.

Denoting by J ′
i those intervals among Ji for which

min
(
− ν0(Ji) +M(A · h,R|Ji), ϵ · h(|Ji|)

)
= −ν0(Ji) +M(A · h,R|Ji)

and by J ′′
i the remaining ones, by rearranging (5.17) we obtain our Inconsistency Inequality,

which reads

(5.18)
∑
i

M(A · h,R|J ′
i) +

∑
i

ϵ · h(|J ′′
i |) <

∑
i

ν0(J
′
i).
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We emphasize that ϵ remains now fixed for the rest of the proof, and that the covering

{Ji}i depends on the choice of A, but that we suppress this in our notation for now. Note

also that the left-hand side of the inequality is a positive quantity. In fact, this quantity

stays away from 0.

Lemma 5.6. Assume that R > 0 on a subset of positive Lebesgue measure on T. Then we

have

inf
A:A≥ϵ

∑
i

M(A · h,R|J ′
i) +

∑
i

ϵ · h(|J ′′
i |) > c0

for some positive number c0.

Proof. Let us assume that by varying A it is possible to have the left-hand side above

converge to zero. We will show R vanishes almost everywhere with respect to the Lebesgue

measure dm.

By the definition in (2.2), for each interval J ′
i there exists a choice of an open set U ′

i ⊂ J ′
i

which is a union of a family of open intervals {ℓi,k}k for which
∫
J ′
i\U ′

i
Rdm+

∑
k A ·h(|ℓi,k|)

is as close as we wish to M(A · h,R|J ′
i). Let

J ′
A =

⋃
i

J ′
i , U ′

A =
⋃
i

U ′
i

and let {ℓk}k be the union over i of the families {ℓi,k}k, so that U ′
A =

⋃
k ℓk. Since A ≥ ϵ,

by our assumption we may arrange our choices so that

(5.19)

∫
J ′
A\U ′

A

Rdm+ ϵ ·
(∑

k

h(|ℓk|) +
∑
i

h(|J ′′
i |)
)
→ 0.

Since ϵ is fixed, we conclude that∑
k

h(|ℓk|) → 0,
∑
i

h(|J ′′
i |) → 0,

and in particular we must have

|U ′
A| ≤

∑
k

|ℓk| → 0,
∑
i

|J ′′
i | → 0.

Since T = (J ′
A \ U ′

A) ∪ U ′
A ∪

(
∪i J

′′
i

)
, we see that the Lebesgue measures of J ′

A \ U ′
A must

grow to full m-measure in T. Since (5.19) implies that
∫
J ′
A\U ′

A
Rdm → 0, and since R is

non-negative, we conclude that
∫
TRdm = 0. So R ≡ 0 almost everywhere with respect to

dm. □

We mention again that the case R = log+(1/w) = 0 is irrelevant for us, as it is equivalent

to w ≥ 1 in which case
∫
T logw dm > −∞, and so the space P t(µ) has the simple structure
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explained in Section 1.4. We may therefore assume that R ̸= 0, and that the lower bound

in Lemma 5.6 holds.

5.4.2. Analysis of the inequality. We have seen that inconsistency of (5.4) leads us to the

conclusion that there exist an ϵ > 0 such that to each choice of A larger than ϵ, there

correspond two families of disjoint half-open intervals {J ′
i}i and {J ′′

i }i, which together

cover the unit circle T, and for which the inequality (5.18) holds, with the left-hand side

being bounded away from 0.

Let EA be the union of closures of the intervals J ′
i :

EA :=
⋃
i

clos(J ′
i).

Since {J ′
i}i is a finite family, the set EA is closed and differs from the union

⋃
i J

′
i only by

finitely many points. Using the notation from the proof of Lemma 5.6, the inconsistency

inequality (5.18) implies that there exist open sets U ′
i =

⋃
k ℓi,k contained in J ′

i for which

c0 <
∑
J ′
i

(∫
J ′
i\U ′

i

Rdm+
∑
k

A · h(|ℓi,k|)

)
+
∑
i

ϵ · h(|J ′′
i |) <

∑
i

ν0(J
′
i).

Since ν0 = ν − ν(T)dm ≤ ν, ν is a non-negative measure, and {J ′
i}i is a disjoint family

of intervals contained in EA, the right-most quantity above is dominated by ν(EA). Using

still the notation from the proof of Lemma 5.6 and setting

E ′
A = EA \ U ′

A,

we obtain

(5.20) c0 <

∫
E′

A

Rdm+
∑
k

A · h(|ℓk|) +
∑
i

ϵ · h(|J ′′
i |) < ν(EA).

The following observations are consequences of the second of the above inequalities.

• The measure ν is non-negative, so ν(EA) ≤ ν(T). As A → ∞, we must therefore

have
∑

k |ℓk| → 0. Since U ′
A = ∪kℓk, we deduce that

(5.21) EA = E ′
A + U ′

A

where |U ′
A| → 0 as A → ∞. In particular, it follows that

lim
A→∞

|EA| − |E ′
A| = 0.
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• The family of complementary intervals to EA is {int(J ′′
i )}i, the interiors of the

intervals {J ′′
i }i, while the complementary intervals of E ′

A consists of the union of

the families {int(J ′′
i )}i and {ℓk}k. From (5.20) we deduce that

(5.22) sup
A:A≥ϵ

(∑
k

h(|ℓk|) +
∑
J ′′
i

h(|int(J ′′
i )|)
)
< ∞.

5.4.3. Compactness properties of the class BCh. For a closed subset E of T and δ > 0, let

Eδ be the usual open δ-neighbourhood of E, consisting of all points at distance less than

δ from E:

Eδ := {z ∈ T : dist(z, E) < δ}.

Lemma 5.7. Let {En}n be a sequence of sets in BCh. Let {ℓn,k}k be the sequence of

maximal open intervals in T complementary to En, and assume that

(5.23) sup
n

∑
k

h(|ℓn,k|) < ∞.

Assume further that for each n the sequences {ℓn,k}k are ordered such that the lengths of

the intervals are decreasing in k:

|ℓn,1| ≥ |ℓn,2| ≥ . . . ,

Then there exists a set E∞ ∈ BCh and a subsequence {Enj
}j such that Enj

→ E∞ in the

following sense:

(i) limj→∞ |Enj
| = |E∞|,

(ii) for every δ > 0 we have that E∞ ⊂ Eδ
nj

and Enj
⊂ Eδ

∞ for all sufficiently large j.

(iii) For each maximal open interval ℓk complementary to E∞, we have that ℓnj ,k converge

to ℓk as j → ∞, in the sense that the endpoints of ℓnj ,k converge to the endpoints of

ℓk.

The lemma is a direct generalization to sets of positive Lebesgue measure of [16, Lemma

3.1.1]. See also [11, Lemma 7.6]. In [3] a similar compactness statement appears in the

context of unions of dyadic cubes. The proofs of these statements are all similar. We

provide one for completeness.

Proof of Lemma 5.7. By an initial passing to a subsequence, we may assume that we have

the convergence of Lebesgue measures of En, which we may express as the convergence of

Lebesgue measures of the complements:

(5.24) lim
n→∞

∑
k

|ℓn,k| = L ≥ 0.
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For k = 1, 2, . . ., we successively attempt to pass to a subsequence of {En}n to ensure

that (after relabeling) ℓn,k converges in the sense of (iii) above to some interval ℓk of

positive length. Our process stops for some finite K if limn→∞ |ℓn,K | = 0, and then we set

ℓk = ∅ for k ≥ K. Else, the process goes on indefinitely. In the latter case, by the usual

diagonal subsequence argument we ensure that ℓn,k converges to ℓk as n → ∞, for all k.

We set in either case

E∞ := T \
(⋃

k

ℓk

)
,

with the appearing union being finite in the former case. Note that we have already ensured

(iii).

Since for each positive integer M it holds that

∑
k≤M

h(|ℓk|) = lim
n→∞

∑
k≤M

h(|ℓn,k|) ≤ sup
n

∑
k

h(|ℓn,k|),

by letting M → ∞ we conclude from (5.23) that E∞ ∈ BCh.

To establish that limn→∞ |En| = |E∞| we may equivalently establish that

(5.25)
∑
k

|ℓk| = lim
n→∞

∑
k

|ℓn,k| = L.

Fatou’s lemma immediately shows that the left-hand side in (5.25) is at most as large as

the right-hand side, which equals L by (5.24). As the left-hand side is non-negative, we

are done if L = 0. Else, we assume for the sake of contradiction that
∑

k |ℓk| = L− α > 0

for some α > 0. Note that for every K, we have

∑
k≥K

h(|ℓn,k|) =
∑
k≥K

h(|ℓn,k|)
|ℓn,k|

|ℓn,k|(5.26)

≥ h(|ℓn,K |)
|ℓn,K |

∑
k≥K

|ℓn,k|.

The last inequality follows from our ordering assumption on {|ℓn,k|}k and the assumption

(R1) in Section 2.1 stating that h(x)/x is decreasing in x. If our process terminated

at k = K, then limn→∞ |ℓn,K | = 0 and
∑

k<K |ℓk| = L − α. Since (R2) states that

limx→0 h(x)/x = ∞, the bound (5.23) and the inequality in (5.26) together imply that
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∑
k≥K |ℓn,k| → 0 as n → ∞. But then

L = lim
n→∞

∑
k<K

|ℓn,k|+
∑
k≥K

|ℓn,k|

=
∑
k<K

|ℓk|

= L− α < L,

and we have reached a contradiction. If the process never terminated, the contradiction is

reached similarly. Now, for each K we have limn→∞ |ℓn,K | = |ℓK | > 0, and also

L =
∑
k<K

|ℓk|+ lim
n→∞

∑
k≥K

|ℓn,k|.

Since
∑

k<K |ℓk| ≤ L− α, it follows from (5.24) that for every K we have

lim
n→∞

∑
k≥K

|ℓn,k| ≥ α.

Letting n → ∞ in (5.26) we deduce

sup
n

∑
k

h(|ℓn,k|) ≥
h(|ℓK |)
|ℓK |

α

Since |ℓK | → 0 as K → ∞, we obtain again a contradiction, this time to (5.23). We have

thus established (5.25), and so (i) holds.

For an open interval ℓ in T and δ ≤ |ℓ|/2, let ℓ(δ) be the closed interval with same

midpoint as ℓ but of length |ℓ| − 2δ. Note that ℓ(δ) degenerates to a point if δ = |ℓ|/2. If
δ > |ℓ|/2, let ℓ(δ) be the empty set. With this notation, we have

T \ Eδ
∞ =

⋃
k

ℓk(δ)

and

T \ Eδ
n =

⋃
k

ℓn,k(δ).

Fix δ > 0. To show that En ⊂ Eδ
∞ for large n, we may equivalently show that⋃

k

ℓn,k ⊃
⋃
k

ℓk(δ)

for all large n. Since |ℓk| → 0 as k → ∞, the sets ℓk(δ) are non-empty for only finitely

many indices k. Since ℓk(δ) is contained in the interior of ℓk and ℓn,k → ℓk as n → ∞,

we obtain easily that ℓk(δ) ⊂ ℓn,k for all large n, and all k. This establishes the inclusion

En ⊂ Eδ
∞ for large n.
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The other inclusion, namely E∞ ⊂ Eδ
n for all large n, is equivalent to⋃

k

ℓk ⊃
⋃
k

ℓn,k(δ).

The same argument works by virtue of

(5.27) lim
K→∞

lim
n→∞

|ℓn,K | = 0,

which holds since limn→∞ |ℓn,K | = |ℓK | for all K. By the ordering assumption on {|ℓn,k|}k
there exists K = K(δ) > 0 for which ℓn,k(δ) = ∅ for k ≥ K and all large n, and we finish

the proof as in the case of the other inclusion. □

5.4.4. Finishing the construction of the associated set. We return to our inequality (5.20).

Since (5.22) holds, there exists a set E∞ ∈ BCh for which we have the convergence

EA → E∞

in the sense of Lemma 5.7, along some sequence of A → ∞. In turn, by (5.22) yet again,

we may pass to a subsequence once more to ensure also that

E ′
A → E ′

∞

as A → ∞, in the same sense. Note that |E∞| = |E ′
∞| by part (i) of Lemma 5.7 and what

was said in the first observation following (5.20).

We shall show that E∞ is the desired set. Namely, it will be shown that E∞ ∈
AssocBCh(w) and ν(E∞) > 0.

Lemma 5.8. With the notation as above, we have E ′
∞ ⊂ E∞. In particular, since the

Lebesgue measures of the two sets are equal, they differ at most by a set of Lebesgue measure

zero.

Proof. We prove the equivalent inclusion of complements, namely

T \ E ′
∞ ⊃ T \ E∞.

Let z ∈ T\E∞, and let ℓ be the maximal open interval complementary to E∞ which contains

z. By part (iii) of Lemma 5.7, there exists a sequence of intervals {J(A)}A complementary

to EA such that J(A) → ℓ in the sense of endpoint convergence. By construction, the

intervals J(A) are complementary to E ′
A also. Since the distance from z to the endpoints

of ℓ is positive, and the endpoints of J(A) converge to the endpoints of ℓ, it follows that the

distance from z to E ′
A is bounded from below as A → ∞. Hence z ̸∈ (E ′

A)
δ for some fixed

δ > 0 sufficiently small and all large A. By part (ii) of Lemma 5.7, we obtain z ̸∈ E ′
∞, and

so z ∈ T \ E ′
∞. □
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From (5.20) and the non-negativity of ν we deduce that

(5.28) lim sup
A→∞

∫
E′

A

Rdm < lim sup
A→∞

ν(EA) ≤ ν(T).

We will show that this implies the inequality

(5.29)

∫
E′

∞

Rdm ≤ ν(T)

from which we will easily deduce that E∞ ∈ AssocBCh(w). If |E ′
∞| = 0, then the above

inequality of course trivially holds, since the left-hand side is equal to 0. By Lemma 5.8

we have in that case |E∞| = 0 also, and hence E∞ ∈ AssocBCh(w). In the case that

|E ′
∞| > 0, by part (i) of Lemma 5.7, for any small δ > 0 and all large enough A, we have

that |E ′
∞|−δ ≤ |E ′

A| and E ′
A ⊂ (E ′

∞)δ. By fixing δ, this implies for large A the inequalities

|E ′
∞| − δ ≤ |E ′

A| = |(E ′
A ∩ E ′

∞)|+ |E ′
A \ E ′

∞|

≤ |E ′
∞|+ |

(
E ′

∞)δ \ E ′
∞|.

Since |
(
E ′

∞)δ \ E ′
∞| → 0 as δ → 0, the above inequalities imply that

|E ′
∞| = lim

A→∞
|E ′

A ∩ E ′
∞|.

Therefore

(5.30) E ′
∞ =

(
E ′

A ∩ E ′
∞
)
∪ r′A

where |r′A| → 0. For any M > 0 we consequently have∫
r′A

min(R,M) dm → 0

as A → ∞, and since∫
E′

∞

min(R,M) dm =

∫
E′

A∩E′
∞

min(R,M) dm+

∫
r′A

min(R,M) dm

≤
∫
E′

A

Rdm+

∫
r′A

min(R,M) dm

we obtain from (5.28) that ∫
E′

∞

min(R,M) dm ≤ ν(T).

Letting M → ∞ we arrive at (5.29), which is equivalent to E ′
∞ ∈ AssocBCh(w). It follows

that E∞ ∈ AssocBCh(w), since
∫
E∞

Rdm =
∫
E′

∞
Rdm, owing to the fact that by Lemma 5.8
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the sets E∞ and E ′
∞ differ only by a set of Lebesgue measure zero. Since EA ⊂ Eδ

∞ for all

large A and any δ > 0, the inequalities in (5.20) and the non-negativity of ν show that

0 < c0 ≤ lim sup
A→∞

ν(EA) ≤ ν(Eδ
∞).

Finally, by continuity of finite measures, we obtain

ν(E∞) = lim
δ→0

ν(Eδ
∞) ≥ c0 > 0.

We have thus shown that the inconsistency of (5.4) implies that ν assigns positive mass to

the set E∞ ∈ AssocBCh(w). With this, our cyclicity proof is complete.

5.5. Proof of the corollary. Having completed the proof of Theorem B, we give a proof

of the corollary stated in the Introduction. We repeat the statement for convenience.

Corollary. Let f = BSνU be the inner-outer factorization of a function f ∈ H∞, where

B is a Blaschke product, Sν is a singular inner function, and U is an outer function. Let

ν = νp + νc be the decomposition of ν in (1.7) associated to the weight w and the gauge

function h in (1.4). If µ has the form (1.2) and [f ] denotes the smallest closed Mz-invariant

subspace containing f in P t(µ), then

[f ] = [BSνp ],

and every function h ∈ [f ] ∩H∞ satisfies h/BSνp ∈ H∞.

Proof. It is clear that [f ] ⊆ [BSνp ], since f/BSνp is bounded, and so f = (f/BSνp)BSνp ∈
[BSνp ]. Conversely, if g ∈ [BSνp ], then there exists a sequence {pn}n of polynomials for

which BSνppn → g in P t(µ). Since Sνc and U are bounded functions, and both are cyclic

in P t(µ), the argument in the second remark following Proposition 5.1 shows that SνU is

cyclic in P t(µ), and so there exists a sequence {qk}k of polynomials for which SνcUqk → 1

in P t(µ). Then

∥fpnqk − g∥µ,t = ∥BSνppn(SνcUqk − 1) +BSνppn − g∥

≤ ∥BSνppn∥∞∥SνcUqk − 1∥µ,t + ∥BSνppn − g∥µ,t.

Fixing a large n we make the second term arbitrarily small. Next, after fixing n, we may

fix also a large k to make the first term arbitrarily small. It follows that g ∈ [f ], and so

we have the equality [f ] = [BSνp ]. The divisibility statement follows from Proposition 4.1.

Indeed, recall that νp is supported on a countable union {En}n of sets in AssocBC(w), and
we may assume that the sets En increase with n. If νn is the restriction of νp to En, then

νn → νp in the sense of weak*-convergence of measures. For any function h ∈ [f ] ∩H∞ =
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[BSνp ] ∩ H∞ ⊂ [Sνn ] ∩ H∞ we have by Proposition 4.1 and the (generalized) maximum

principle in H∞ that

∥h/Sνn∥∞ = ∥h∥∞.

By weak*-convergence and formula (1.1), we have that Sνn(z) → Sν(z) for z ∈ D. Let

n → ∞ to obtain that

∥h/Sνp∥∞ = ∥h∥∞.

Since certainly we have h/B ∈ H∞, we conclude finally that h/BSνp ∈ H∞. □

5.6. Nevanlinna class and cyclicity. As alluded to in the Introduction, the cyclicity

result has a simple extension from bounded functions to quotients of bounded functions,

i.e, to the Nevanlinna class:

f = d/c, d, c ∈ H∞, c(z) ̸= 0, z ∈ D.

A function f of this form has many other representation as a quotient of bounded functions,

and a particularly useful one is

(5.31) f =
BSν1do
Sν2co

,

where do and co are bounded outer functions, B is a Blaschke product, and ν1, ν2 are

singular inner functions for which the corresponding measures ν1 and ν2 are mutually

singular. In other words, Sν1 and Sν2 have no common non-trivial singular inner factor.

Corollary 5.9. Let f have the form (5.31), with B ≡ 1, so that f is non-vanishing in D.
If f ∈ P t(µ) and µ has the form (1.2), then f is cyclic in P t(µ) if and only if Sν1 is cyclic

in P t(µ).

Proof. If Sν1 is not cyclic, then according to our main result there exists a set E ∈
AssocBC(w) for which ν1(E) > 0, and any bounded function in the invariant subspace

[Sν1|E] has an inner factor divisible by Sν1|E. If f is cyclic, then for some sequence {pn}n
of polynomials we have fpn → 1 in the norm of P t(µ). Since multiplication by Sν2co is a

bounded operation on P t(µ), we obtain the norm convergence

Sν1doSν2copn → Sν2co,

and hence Sν2co ∈ [Sν1|E]. Since c0 is outer, and ν1|E and ν2 are mutually singular, the

function Sν2co has the inner factor Sν2 which is not divisible by Sν1|E, and so we reach a

contradiction. Thus Sν1 not being cyclic implies that f is not cyclic either.
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Conversely, assume that Sν1 is cyclic. Then Sν1do is also cyclic, and clearly Sν1do =

Sν2cof ∈ [f ]. Hence

[f ] ⊇ [Sν1do] = P t(µ),

and the proof is complete.

□

Appendix A. Premeasures

The use of premeasures in the context of cyclicity problems goes back to Korenblum’s

work in [15], [16], where they were used in Poisson-type representations of harmonic func-

tions which satisfy certain growth bounds in the unit disk D. In the article, we study only

the cyclicity of bounded functions, and as a consequence, our use of premeasures is not a

necessity, but rather a convenience which allows for certain simplifications in proofs.

A.1. Basic properties.

Definition A.1. A normalized premeasure σ is a set function mapping intervals in T
(closed, open or half-open, and the interval may reduce to a single point) into real numbers,

with the following properties:

(P1) σ(T) = 0 (normalization),

(P2) σ(I1 ∪ I2) = σ(I1) + σ(I2) for disjoint intervals I1, I2 ⊂ T (additivity),

(P3) if {In}n is a nested sequence of intervals shrinking to the empty set, then σ(In) → 0

(continuity).

If the last two properties are satisfied but not the first, then we will simply say that σ

is a premeasure.

Korenblum in [15] and [16] postulates a number of properties of premeasures. We will

spend this section to argue for validity of those properties in a slightly increased generality,

which is necessary for the rest of the article.

To every normalized premeasure σ we may associate its primitive function ρσ : (0, 2π] →
R, defined by

(A.1) ρσ(t) = σ(It), It = [1, eit), t ∈ (0, 2π].

Here It = [1, eit) is the half-open interval of T starting at 1 (inclusive) and ending at eit

(exclusive). The characterizing properties of the primitive functions ρ = ρσ arising in this

way from normalized premeasures are the following.
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Proposition A.2. Let σ be a normalized premeasure. Then the primitive function in

(A.1) satisfies the following properties:

(I) if t′ → t ∈ (0, 2π] from the left, then ρ(t′) → ρ(t) (continuity from the left),

(II) if t′ → t ∈ [0, 2π) from the right, then ρ(t′) converges to a limit ρ(t+) (limits from

the right),

(III) ρ(2π) = 0.

Conversely, every function ρ satisfying (I), (II) and (III) corresponds to a normalized

premeasure σ, defined uniquely by the requirement that

(A.2) σ(It) := ρ(t), It = [1, eit), t ∈ (0, 2π).

The lemma has a straightforward proof which we skip. Given ρ and the equation (A.2),

one extends σ to unions of any type of intervals using the continuity properties (I) and (II)

and the requirement (P2). If (III) does not hold for ρ, then the corresponding construction

will produce a premeasure σ which is not normalized.

It will be convenient to set a notation for the size of the jump of ρ at a point t:

(A.3) Jρ(t) := |ρ(t)− ρ(t+)| = |ρ(t)− lim
t′→t
t′>t

ρ(t′)|, t ∈ (0, 2π).

Our definitions ensure that Jσ is large only at a finite number of points.

Lemma A.3. For every δ > 0, there exist only a finite number of t ∈ (0, 2π) for which we

have Jσ(t) > δ.

Proof. Were the lemma not true, then for some δ > 0 a sequence {tn}n of distinct numbers

would exist which converges to some t∗ ∈ [0, 2π] and for which we have J(tn) > δ for all n.

After passing to a subsequence, we may assume that the elements of the sequence {tn}n are

all either strictly larger or strictly smaller than t∗, say the latter. By the definition of Jρ, for

each n there exists a number t′n satisfying tn < t′n < t∗ for which we have |ρ(tn)−ρ(t′n)| > δ.

If we interweave the sequences {tn}n and {t′n}n into a sequence {sn}n then sn → t from

the left, but ρ(sn) does not converge, breaking property (I) (were {tn}n all strictly larger

than t∗, an analogous argument would break property (II) instead). □

A smooth function h may be integrated against a normalized premeasure by employing

the following definition:

(A.4)

∫
[0,2π)

h(eit)dσ(eit) := −
∫
[0,2π)

( d

dt
h(eit)

)
ρσ(t) dt.
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We note that, as a consequence of Lemma A.3, the function ρσ has only a countable number

of discontinuities, and is therefore Riemann integrable. It follows that the right-hand side

in (A.4) is well-defined in ordinary sense. If σ is a bona fide finite Borel measure satisfying

σ(T) = 0, then both sides of (A.4) make sense and are equal. We extend the definition

(A.4) to not necessarily normalized premeasures in the natural way by decomposing a

premeasure dσ as a sum (dσ − σ(T)dm) + σ(T)dm of a normalized premeasure and a

constant multiple of the Lebesgue measure. The integral we then define as the sum of the

integrals corresponding to σ − σ(T)dm and dm, the second defined in the classical sense.

A.2. Sequential compactness. If a family of premeasures obeys a certain upper esti-

mate, then the family is sequentially compact in the following weak sense.

Lemma A.4 (Helly selection principle). If h : [0, 1] → R+ is a continuous increasing

function, h(0) = 0, and {σn}n is a sequence of normalized premeasures which obey the

upper estimate

σn(I) ≤ h(|I|)

for all intervals I on T, then there exists a subsequence {σnk
}k, a real constant c, and a

normalized premeasure σ satisfying σ(I) ≤ h(|I|) for all intervals I, such that

(A.5) lim sup
k→∞

|ρσnk
(t)− ρσ(t)− c| ≤ Jρ(t), t ∈ (0, 2π).

Moreover, in the above situation, we have

lim
k→∞

∫
[0,2π)

g(eit)dσnk
(eit) =

∫
[0,2π)

g(eit)dσ(eit)

for all smooth functions g : T → C.

The principle is stated in a similar form and without proof in [15] for the particular choice

of gauge function h in (1.4). The normalization assumption is necessary as evidenced by

the sequence {−n · dm}n, which obviously satisfies the upper estimate, but for which the

sequence {ρσn}n converges pointwise to −∞ on (0, 2π) as n → ∞. The appearance of the

constant c in (A.5) may be justified by considering a sequence {σn}n for which we have

limn→∞ ρσn(t) = c ̸= 0 for all t close to 2π. Take, for instance, the functions

ρσn(t) =


t, t ∈ [0, 1],

1, t ∈ (1, 2π − 1/n)

1− n(t− 2π + 1/n), t ∈ [2π − 1/n, 2π]
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Then it follows readily from (A.2) that we have the upper estimate σn(I) ≤ |I|. However,
note that if a subsequence of {ρσn}n converges pointwise to a function ρ which satisfies (I),

then ρ must also satisfy ρ(2π) = 1, breaking (III).

Proof of Lemma A.4. By properties (P1) and (P2) of premeasures, and by our hypothesis,

we obtain for any interval I the inequality

−σn(I) = σn(T \ I) ≤ h(|T|).

Since σn(I) ≤ h(|I|) ≤ h(|T|) also, we obtain the uniform bound |ρσn(t)| ≤ h(|T|) for

t ∈ [0, 2π). Hence the sets {ρσn(t)}n are bounded in R, and so by the usual diagonal

process, we may pass to a subsequence and ensure that ρσn(r) → cr, n → ∞, for every

rational r ∈ (0, 2π]. Here cr is a real number of modulus at most h(|T|). For t ∈ (0, 2π],

we define

(A.6) ρ̃(t) := lim
r→t
r<t

cr.

The limit does exist. Indeed, for rationals r1, r2 satisfying r1 < r2 < t and the half-open

interval Ir1,r2 = [eir1 , eir2) between them, we have

cr2 − cr1 = lim
n→∞

ρσn(r2)− ρσn(r1) = lim
n→∞

σn(Ir1,r2) ≤ h(r2 − r1)

If we let r2 → t and r1 → t from the left in such a way that

cr2 → lim sup
r→t
r<t

cr, cr1 → lim inf
r→t
r<t

cr

then we obtain from the above inequality, and the hypothesis on h, that

lim sup
r→t
r<t

cr − lim inf
r→t
r<t

cr ≤ 0.

Hence (A.6) is well-defined.

We claim that ρ̃ satisfies conditions (I) and (II) for being a primitive function of a

premeasure which appear in Proposition A.2. To verify (I), let {tm}m be any sequence

which converges to t ∈ (0, 2π] from the left. Take rational rm such that rm < tm, rm → t,

and crm > ρ̃(tm)− 1/m. Then our definitions, and the already established existence of the

limit in (A.6), imply that

ρ̃(t) = lim
m→∞

crm ≥ lim sup
m→∞

ρ̃(tm).

On the other hand, by (A.6) there exists a short open interval Iϵ with right endpoint t such

that cr > ρ̃(t)− ϵ for every rational r ∈ Iϵ. If tm ∈ Iϵ, then the definition (A.6) shows that

ρ̃(tm) ≥ ρ̃(t)− ϵ. Hence lim infm→∞ ρ̃(tm) ≥ ρ̃(t), and we have thus verified property (I).
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We now show that (II) holds. Assume that the limit does not exist, and so that there

exist two sequences {tm}n and {t′m}m which both converge to t ∈ [0, 2π) from the right,

but such that limm→∞ ρ̃(tm) > limm→∞ ρ̃(t′m) + δ for some δ > 0. By our definition, this

corresponds to existence of two sequences {rm}m, {r′m}m of rational numbers converging

to t from the right, for which

lim
m→∞

crm − cr′m > δ.

We may assume that the sequences satisfy r′m < rm for all m. Note that

δ < crm − cr′m = lim
n→∞

ρσn(rm)− ρσn(r
′
m) = lim

n→∞
σn(Im), Im = [eir

′
m , eirm).

Thus

δ < lim
n→∞

σn(Im) ≤ h(r′m − rm).

Since r′m−rm → 0 as m → ∞, we obtain a contradiction to our hypothesis on h. It follows

that (II) holds.

Let us now show that

(A.7) lim sup
n→∞

|pσn(t)− ρ̃(t)| ≤ Jρ(t), t ∈ (0, 2π).

Fix ϵ > 0 and take rational r for which we have r < t, |t− r| < ϵ and |cr − ρ̃(t)| < ϵ. Then

lim sup
n→∞

ρσn(t)− ρ̃(t) ≤ lim sup
n→∞

ρσn(t)− cr + ϵ

= lim sup
n→∞

ρσn(t)− ρσn(r) + ϵ

≤ h(ϵ) + ϵ.

Let ϵ → 0 to conclude that

lim sup
n→∞

ρσn(t) ≤ ρ̃(t), t ∈ (0, 2π).

Analogously, we may take r+ > t, |t− r+| < ϵ, |ρ(t+)− cr+ | < ϵ, and estimate

lim inf
n→∞

ρ̃(t+)− ρσn(t) ≤ lim inf
n→∞

cr+ − ρσn(t) + ϵ

= lim inf
n→∞

ρσn(r+)− ρσn(t) + ϵ

≤ h(ϵ) + ϵ

which shows that

ρ̃(t+) ≤ lim inf
n→∞

ρσn(t), t ∈ (0, 2π).

Combining the two inequalities, we arrive at

ρ̃(t+) ≤ lim inf
n→∞

ρσn(t) ≤ lim sup
n→∞

ρσn(t) ≤ ρ̃(t), t ∈ (0, 2π)
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which implies (A.7).

Setting c = ρ̃(2π) and

ρ(t) = ρ̃(t)− c, t ∈ (0, 2π]

we force condition (III), without breaking (I) and (II), and so we obtain a function ρ = ρσ

corresponding to a premeasure σ as in Proposition A.2. We deduce from (A.7) that (A.5)

now holds, and moreover, at any point t ∈ (0, 2π) at which Jρ(t) = 0, we have that

lim
n→∞

ρσn(t) = ρσ(t) + c.

This implies the corresponding integral convergence. Indeed, let g be a smooth function

on T. By the definition in (A.4), uniform boundedness of ρσn and the fact that Jρ(t) is

non-zero only at a countable number of points (recall Lemma A.3), we obtain from the

Dominated Convergence Theorem that

lim
n→∞

∫
[0,2π)

g(eit)dσn(e
it) = lim

n→∞
−
∫
[0,2π)

( d

dt
g(eit)

)
ρσn(t) dt.

= −
∫
[0,2π)

( d

dt
g(eit)

)
ρσ(t) dt− c

∫
[0,2π)

d

dt
g(eit) dt

= −
∫
[0,2π)

( d

dt
g(eit)

)
ρσ(t) dt

=

∫
[0,2π)

g(eit)dσ(eit).

We used that g(eit) is periodic between the second and third lines, which makes the second

integral on the second line vanish.

Finally, we verify that σ(I) ≤ h(|I|) for all intervals. By property (I) and (II) of

premeasures, and continuity of h, it will suffice to show the bound for half-open intervals

I = [eit, eit
′
) with endpoints eit, eit

′
on which σ carries no mass. Then the jumps Jρ(t),

Jρ(t
′) are equal to 0, and so from (A.5) we obtain

σ(I) = ρ(t)− ρ(t′) = lim
n→∞

ρσn(t)− ρσn(t
′) = lim

n→∞
σn(I) ≤ h(|I|).

□

A.3. Poisson integral estimates. The Poisson integral bound (3.13) which we use in

Section 3 holds also for normalized premeasures. Namely, if we have the upper estimate

σ(I) ≤ h(|I|), then setting g(eit) = Pz(e
it) to be the Poisson kernel,

(A.8) Pz(e
it) :=

1− |z|2

|eit − z|2
= Re

(eit + z

eit − z

)
,
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the same proof as in the case of σ being an ordinary Borel measure (see [10, p. 297]) gives

us a constant C = C(h) > 0 for which it holds that

(A.9)

∫
[0,2π)

Pz(e
it)dσ(eit) ≤ Ch(1− |z|)

1− |z|
.

See also [11, Exercise 4.9.1]. A similar estimate holds of course also for non-normalized pre-

measures, but then the constant C depends on the quantity σ(T) also: C = C(h) exp(σ(T)).
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139(2):495–519, 2019.

[13] O. Ivrii and A. Nicolau. Beurling-Carleson sets, inner functions and a semi-linear equation. arXiv

preprint arXiv:2210.01270, 2022.

[14] S. V. Khrushchev. The problem of simultaneous approximation and of removal of the singularities of

Cauchy type integrals. Trudy Matematicheskogo Instituta imeni VA Steklova, 130:124–195, 1978.

[15] B. Korenblum. An extension of the Nevanlinna theory. Acta Mathematica, 135:187–219, 1975.

[16] B. Korenblum. A Beurling-type theorem. Acta Mathematica, 138(1):265–293, 1977.

[17] B. Korenblum. Cyclic elements in some spaces of analytic functions. Bulletin of the American Math-

ematical Society, 5(3):317–318, 1981.



56 BARTOSZ MALMAN

[18] T. L. Kriete and B. D. MacCluer. Mean-square approximation by polynomials on the unit disk.

Transactions of the American Mathematical Society, 322(1):1–34, 1990.

[19] A. Limani and B. Malman. An abstract approach to approximation in spaces of pseudocontinuable

functions. Proceedings of the American Mathematical Society, 150(06):2509–2519, 2022.

[20] A. Limani and B. Malman. On the problem of smooth approximations in H(b) and connections to

subnormal operators. Journal of Functional Analysis, 284(5):109803, 2023.

[21] A. Limani and B. Malman. Constructions of some families of smooth Cauchy transforms. Canadian

Journal of Mathematics, 76(1):319–344, 2024.

[22] B. Malman. Revisiting mean-square approximation by polynomials in the unit disk. Accepted for
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