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Abstract. We study conditions for containment of a given space X
of analytic functions on the unit disk D in the de Branges-Rovnyak
space H(b). We deal with the non-extreme case in which b admits a
Pythagorean mate a, and derive a multiplier boundedness criterion on
the function ϕ = b/a which implies the containment X ⊂ H(b). With
our criterion, we are able to characterize the containment of the Hardy
spaceHp insideH(b), for p ∈ [2,∞]. The end-point cases have previously
been considered by Sarason, and we show that in his result, stating that
ϕ ∈ H2 is equivalent to H∞ ⊂ H(b), one can in fact replace H∞ by
BMOA. We establish various other containment results, and study in
particular the case of the Dirichlet space D, containment of which is
characterized by a Carleson measure condition. In this context, we show
that matters are not as simple as in the case of the Hardy spaces, and
we carefully work out an example.

1. Introduction and main results

1.1. H(b)-spaces. In this note we study embeddings of other Banach spaces

inside the de Branges-Rovnyak spaces H(b). The space H(b) is the Hilbert

space of analytic functions in the unit disk D := {z ∈ C : |z| < 1} with a

reproducing kernel kb : D× D → C given by

kb(λ, z) :=
1− b(λ)b(z)

1− λz
.

and where b : D → D is analytic. Resources on the theory of H(b)-spaces

include Sarason's little book [16] and more recent extensive monographs by

Fricain and Mashreghi [7], [8].

Unfortunately, the various methods for construction of the space H(b)

(for instance, those given in the above references) often leave one wondering

what kind of functions f are actually contained in the space, and how to

compute the corresponding norms ∥f∥H(b). We always have H(b) ⊂ H2, the

latter one being the classical Hardy space. The trivial case H(b) = H2, with

equivalent norms, occurs precisely when supz∈D |b(z)| < 1. A celebrated

result of Sarason states that the condition for containment in H(b) of the
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set of analytic polynomials P is equivalent to the condition∫
T
log(1− |b(ζ)|)dm(ζ) > −∞

where by dm we denote the Lebesgue measure on the unit circle T = ∂D =

{z ∈ C : |z| = 1} (normalized, for convenience, by the condition m(T) = 1).

The above logarithmic integrability condition is well-known to be equivalent

to b being a non-extreme point of the unit ball ofH∞, the algebra of bounded

analytic functions in D. There is an observed dichotomy of properties ofH(b)

depending on if b is extreme or not, and in this note we deal exclusively with

non-extreme symbols b.

1.2. A classical inclusion result. One of Sarason's results from [15, The-

orem 1] characterizes when the containment H∞ ⊂ H(b) occurs. In or-

der to state his result, we need to �rst introduce the standard notion of a

Pythagorean mate a : D → D of b. This a is the outer function satisfying

the relation

|a|2 + |b|2 = 1

on the boundary T. The above equality is interpreted, as usual, in terms of

the boundary functions on T induced by a and b. The Pythagorean mate

is unique if we impose the normalization condition a(0) > 0. The function

ϕ = b/a is then a member of the Smirnov class N+ of quotients of bounded

analytic functions with outer denominator (see [9, Chapter II]). It is not

hard to see that the mapping b 7→ ϕ = b/a implements a bijection between

the non-extreme points of the unit ball of H∞ and the Smirnov class N+. In

particular, we may think of any non-extreme space H(b) as corresponding

to a function ϕ ∈ N+.

Sarason's result then reads as follows.

Theorem 1.1. (Sarason) Let ϕ = b/a. The following two statements are

equivalent:

(i) H∞ ⊂ H(b),

(ii) ϕ ∈ H2.

Whenever we have an inclusion of a spaceX ⊂ H2, with the former space

being continuously contained in H2, the closed graph theorem implies that

we can control the H(b)-norm in the following way: there exists a constant

C > 0 such that for each f one has

∥f∥H(b) ≤ C∥f∥X .
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We interpret both above quantities to be +∞ if f is not contained in the

corresponding space. Thus Sarason's result tells us precisely when the H(b)-

norm can be controlled by the supremum norm. Similar matters have been

previously investigated in [2], where reverse Carleson measures for H(b)-

spaces have been studied. The results of this note will characterize symbols

b for which the H(b)-norm is controlled by the norms of the Hardy spaces

Hp, for p ∈ [2,∞].

1.3. Inclusion of Hp-spaces. The earlier mentioned condition ∥b∥∞ < 1

is equivalent to the statement that ϕ = b/a ∈ H∞, which therefore is

equivalent to the Banach space equalityH(b) = H2. Together with Sarason's

above result, we obtain the two statements

ϕ ∈ H∞ ⇔ H2 = H(b)

and

ϕ ∈ H2 ⇔ H∞ ⊂ H(b).

Cast in this way, one is immediately lead to attempt to �interpolate� between

these two results and derive inclusions Hp ⊂ H(b) as a consequence of the

containment ϕ ∈ Hp̃ for some p̃ > 2. Here Hp is the classical Hardy space

consisting of functions analytic in D for which we have

(1.1) ∥f∥pp := sup
r∈(0,1)

∫
T
|f(rζ)|pdm(ζ) <∞.

Our �rst main result realizes the mentioned �interpolation�.

Main Theorem 1.2. Let ϕ = b/a, p ∈ (2,∞) and p̃ = 2p
p−2

. The following

two statements are equivalent:

(i) Hp ⊂ H(b),

(ii) ϕ ∈ Hp̃.

As a consequence, we know precisely when the H(b)-norm can be con-

trolled by the Hp-norms in (1.1). Moreover, at the end-point p = ∞ our

method actually gives an improvement of Sarason's Theorem 1.1.

Main Theorem 1.3. The following three statements are equivalent.

(i) H∞ ⊂ H(b),

(ii) BMOA ⊂ H(b),

(iii) ϕ ∈ H2.

In fact, one may replace BMOA by any of the spaces VMOA or the

disk algebra A in the statement of the theorem. Here BMOA and VMOA

are, respectively, the spaces of analytic functions of bounded and vanishing
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mean oscillation on T, namely, the dual and the pre-dual of the Hardy space

H1.

1.4. Method: a multiplier criterion. Our Main Theorem 1.2 and Main

Theorem 1.3 are consequences of an abstract result relating the containment

of a rather general space X inside H(b) to the boundedness of a certain

multiplication operator. In the setting of our abstract result, we consider

Banach spaces X of analytic functions in D which admit a Cauchy dual X∗

and which we de�ne precisely in Section 2.3. In short, a space X admits a

Cauchy dual X∗ if every bounded linear functional on X is represented by

an analytic function g ∈ X∗, and the duality pairing is

(1.2)
〈
f, g

〉
:= lim

r→1−

∫
T
f(rζ)g(rζ)dm(ζ), f ∈ X, g ∈ X∗.

For instance, if X = Hp, 1 < p < ∞, then the Cauchy dual X∗ equals Hq,

where q is the Hölder conjugate index.

In simplest form, our abstract criterion reads as follows.

Main Theorem 1.4. Let X be a Banach space of analytic functions in D
in which the analytic polynomials are dense, and let ϕ = b/a. The following

two statements are equivalent.

(i) The multiplication operator Mϕ : f 7→ ϕf is bounded from H2 to X∗.

(ii) We have a continuous embedding X ↪→ H(b).

The compactness ofMϕ is equivalent to the compactness of the corresponding

embedding.

In Section 3 we appropriately relax the assumption on the density of

polynomials in X in order to apply our result to examples such as X =

BMOA. In Section 4 we apply the multiplier criterion to some other types

of spaces X.

1.5. Containment of the Dirichlet space. The case of the containment

of the Dirichlet space D inside a given H(b) is a curious one. The space D
consists of functions satisfying

∥f∥2D := ∥f∥22 +
∫
D
|f ′(z)|2dA(z) <∞,

where dA is the area measure on the unit disk, normalized by the condition

A(D) = 1. An application of our multiplier criterion in Main Theorem 1.4

readily tells us that we have D ⊂ H(b) if and only if the measure |ϕ|2dA
is a Carleson measure for H2, with the embedding being compact if this

measure is a vanishing Carleson measure (see Section 4.1 for the de�nitions

and proof of this claim). This is a rather insatisfactory characterization,
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and for this reason we spend some portion of this note in studying a speci�c

example.

Note that according to Main Theorem 1.2 the containment of the Hardy

spacesHp insideH(b) is determined entirely by the magnitude of the bound-

ary values of ϕ (or b) on T. In the case of the Dirichlet space and the Car-

leson measure condition, it is not immediately clear if the inner factor Ib of b

plays a role, and if so, to what extent. To study this question, we introduce

a one-parameter family of Smirnov class functions

ϕc(z) =
1

(1− z)c
, z ∈ D, c > 0

and consider

θ(z) = exp
(
− 1

2
· 1 + z

1− z

)
, z ∈ D.

To ϕc there corresponds a unique (up to a unimodular constant factor) outer

function bc : D → D which satis�es the boundary value equation

|ϕc|2 =
|bc|2

1− |bc|2
.

In Example 4.3 and Proposition 5.1 below, we use the Carleson measure

condition to �nd out the ranges of the parameter c for which the de Branges-

Rovnyak spaces corresponding to the Smirnov class functions ϕc and θϕc

contain the Dirichlet space. We obtain that the answer di�ers depending on

if the inner factor θ is present or not, which con�rms that the containment

of D ⊂ H(b) is a matter more delicate than the containments Hp ⊂ H(b).

1.6. Some other related results. Several existing works deal with re-

sults connected to ours. The converse question H(b) ⊂ X has been studied

by Bellavita and Dellepiane in [1], in the particular case that X is a so-

called local Dirichlet space Dζ . A result of Sarason from [17] shows that

the isometric equality H(b) = Dζ holds for an appropriate choice of b and

ζ. A thorough investigation of when isomorphic (not necessarily isometric)

equality between H(b) and a harmonically weighted Dirichlet space holds

has been carried out in [3]. It turns out that such an equality holds only in

rather speci�c cases.

2. Abstract considerations: the multiplier criterion

This section deals with elementary material. We present �rst some parts

of the theory of H(b)-spaces which are important in the sequel. Next, we

introduce unbounded Toeplitz opeators and Cauchy duals. The section ends

with a proof of our multiplier criterion.
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2.1. A linear operator equation. For a function h ∈ H∞, let Th denote

the usual co-analytic Toeplitz operator with symbol h. That is, if L2(T)
is the space of square-integrable functions on the unit circle T, and P+ :

L2(T) → H2 is the orthogonal projection, then Thf = P+hf for f ∈ H2. An

analysis of the following linear operator equation in (2.1) will lead to the

proofs of our main results.

Proposition 2.1. Let b be a non-extreme point of the unit ball of H∞, and

a : D → D be the Pythagorean mate of b. Then f ∈ H2 is contained in H(b)

if and only if a solution f+ ∈ H2 exists to the operator equation

(2.1) Tbf = Taf+.

If a solution f+ exists, then it is unique, and we have

∥f∥2H(b) = ∥f∥22 + ∥f+∥22.

The result is well-known and forms a basis for the study of non-extreme

H(b)-spaces. For a discussion and a proof, see for instance [8, Section 23.3].

2.2. Toeplitz operators with unbounded symbols. In order to solve

the equation (2.1), one might be tempted to set ϕ = b/a and formally solve

f+ = Tϕf,

which of course doesn't make sense, since the unbounded function ϕ cannot

at once be interpreted as a well-de�ned symbol of a Toeplitz operator onH2.

Nevertheless, appropriately de�ned Toeplitz operators with such unbounded

symbols come in handy in the analysis of (2.1). They will play a key role

throughout this note.

Let P denote the set of analytic polynomials, andN+ denote the Smirnov

class of analytic functions ϕ in D which can be expressed as quotients ϕ =

c/d, with c, d ∈ H∞ and d an outer function (for precise de�nitions see, for

instance, [9, Chapter II]).

De�nition 2.2. If ϕ ∈ N+ and {ϕk}k≥0 is the sequence of coe�cients of

the Taylor expansion of ϕ at z = 0, then we de�ne Tϕ : P → P as the linear

operator which, with respect to the basis {zn}∞n=0 of P , has the following

matrix representation: 
ϕ0 ϕ1 ϕ2 ϕ3 . . .

0 ϕ0 ϕ1 ϕ2
. . .

0 0 ϕ0 ϕ1
. . .

...
...

...
. . . . . .

 .
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In other words, Tϕ is the linear extension of the following action on

monomials zn (with slight abuse of notation):

(2.2) Tϕzn =
n∑
k=0

ϕn−kz
k.

If ϕ is bounded in D, then the above de�nition coincides on the polynomials

with the action of the usual bounded Toeplitz operator Tϕ : H2 → H2.

Lemma 2.3. If ϕ, ψ ∈ N+, then

Tϕψ = TϕTψ.

A proof of Lemma 2.3, which we skip, requires only a short computation

using the above matrix representation of the operators. It follows that if p is

a polynomial and ϕ = b/a, then TaTϕp = Tbp. In notation of Proposition 2.1,

we have

p+ = Tϕp
and

(2.3) ∥p∥2H(b) = ∥p∥22 + ∥Tϕp∥22.

In particular, we deduce from (2.2) that we have

(2.4) ∥zn∥2H(b) = 1 +
n∑
k=0

|ϕk|2.

This is, of course, all well-known to specialists of the H(b)-theory.

For certain well-behaved spaces X, the relation in (2.3) immediately

implies a criterion for containment of X ⊂ H(b).

Corollary 2.4. Let X be a Banach space continuously contained in H2, and

ϕ = b/a. If X contains the algebra of polynomials as a norm-dense subset,

then X ⊂ H(b) if and only if there exists a constant C > 0 such that

∥Tϕp∥2 ≤ C∥p∥X , p ∈ P .

Proof. If the above inequality holds, then take any f ∈ X and a sequence of

polynomials {pn}n which converges to f in the norm of X. The continuous

containment of X in H2 implies that pn(z) → f(z) for each z ∈ D, and
supn ∥pn∥2 < +∞. Our assumption implies that supn ∥Tϕpn∥2 < +∞, and

then from the H(b)-norm formula in (2.3) we conclude that supn ∥pn∥H(b) <

+∞. Thus we may pass to a subsequence of {pn}n which converges weakly

to some function in H(b). By the above stated pointwise convergence, this

limit must be f , which is thus a member of H(b).

The converse implication follows immediately from closed graph theorem

and (2.3). Indeed, the embedding X ↪→ H(b) is a closed operator, and so
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there exists a constant C > 0 such that ∥p∥H(b) ≤ C∥p∥X for p ∈ P . The
result now follows from (2.3), □

2.3. Cauchy duality. The criterion in Corollary 2.4 simply means that

Tϕ : P → P extends to a bounded operator Tϕ : X → H2. This condition

might be hard to verify. Given some additional structure on X, we will be

able to rephrase Corollary 2.4 in terms of the boundedness of a multiplica-

tion operator which is the adjoint of Tϕ.
To do so, we will assume that X admits a dual space X∗ which is itself

a space of analytic functions in D. The duality pairing
〈
·, ·
〉
between the

spaces is assumed to have the form

(2.5)
〈
f, g

〉
:= lim

r→1−

∫
T
f(rζ)g(rζ)dm(ζ), f ∈ X, g ∈ X∗.

Here dm denotes the Lebesgue measure on the unit circle T, normalized by

the condition m(T) = 1. Such duality pairings are usually called Cauchy

pairings, and X∗ is called the Cauchy dual to X. The Cauchy dual X∗

contains the polynomials P , and this set may or may not be norm-dense in

X∗ (consider X = H1, X∗ = BMOA). In the case that both f and g are

members of H2, the de�nition (2.5) reduces to〈
f, g

〉
=

〈
f, g

〉
2
:=

∫
T
fg dm =

∞∑
n=0

fngn,

where {fn}n and {gn}n are the sequences of Taylor coe�cients (centered at

z = 0) of the functions f and g. From this observation, and from (2.2), we

easily deduce that

(2.6)
〈
Tϕzn, zm

〉
= ϕn−m,

where we intepret ϕk ≡ 0 for k < 0. Assuming for a moment that Tϕ :

X → H2 is bounded, we consider the adjoint operator T ∗
ϕ
: H2 → X∗. For

monomials, the action of the adjoint operator is given by〈
zn, T ∗

ϕ
zm

〉
=

〈
Tϕzn, zm

〉
= ϕn−m,

from which we deduce (again, slightly abusing notation) that

T ∗
ϕ
zm =

∞∑
n=0

ϕn−mz
n = ϕ(z)zm.

This shows that

T ∗
ϕ
f(z) :=Mϕf(z) = ϕ(z)f(z), f ∈ H2,

which identi�es the adjoint as a multiplication operator Mϕ : H2 → X∗.
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2.4. Multiplier criterion. Our criterion for containment X ⊂ H(b) reads

as follows.

Proposition 2.5. Let X and X∗ be as described earlier, with polynomials

norm-dense in X, and ϕ = b/a. The following three statements are equiva-

lent.

(i) X is contained in H(b).

(ii) The co-analytic Toeplitz operator Tϕ : X → H2 is bounded.

(iii) The multiplication operator Mϕ : H2 → X∗ is bounded.

Proof. We have above already proved the equivalence (i) ⇔ (ii) and the

implication (ii) ⇒ (iii). It remains to prove that (iii) ⇒ (ii), which is

routine. Indeed, the adjoint operator M∗
ϕ : X∗∗ → H2 is bounded, and

therefore so is its restriction M∗
ϕ : X → H2. We have〈

M∗
ϕz

n, zm
〉
2
=

〈
zn,Mϕz

m
〉
= ϕn−m

which shows that M∗
ϕ = Tϕ. □

As it stands, Proposition 2.5 cannot be applied to X = BMOA, since

the density of polynomials assumption does not hold in this case. However,

X = VMOA satis�es this assumption, and in Proposition 3.4 below we

shall see how to deduce the contaiment BMOA ⊂ H(b) from a general

statement and the containment VMOA ⊂ H(b).

2.5. Compact embedding criterion. The compactness of the embedding

X ⊂ H(b) can also be characterized in terms of properties of the operator

Mϕ : H2 → X∗. Note that it is necessary for the embedding X ⊂ H2 to

be compact if X ⊂ H(b) is to be compact.

Proposition 2.6. Let X and X∗ be as before, and ϕ = b/a. Assume that

the embedding X ↪→ H2 is compact. The following three statements are

equivalent.

(i) X is compactly embedded in H(b).

(ii) The co-analytic Toeplitz operator Tϕ : X → H2 is compact.

(iii) The multiplication operator Mϕ : H2 → X∗ is compact.

Proof. The equivalence (ii) ⇔ (iii) is a well-known property of the adjoint

operation.

Assume that (i) holds. Then we already know from Proposition 2.5 that

Tϕ : X → H2 is bounded, and we want to show that this operator is also
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compact. We verify this by showing that Tϕ takes weakly convergent se-

quences to norm convergent ones. By density, it su�ces to consider se-

quences of polynomials. So, take a sequence {pn}n of polynomials weakly

convergent to 0 in X. We have

lim sup
n→∞

∥Tϕpn∥2 ≤ lim sup
n→∞

∥pn∥H(b) = 0

by (2.3) and compactness of the embeddingX ↪→ H(b). We have established

(i) ⇒ (ii).

We prove the converse implication (ii) ⇒ (i) by showing that a sequence

{pn}n of polynomials which is weakly convergent to 0 in X converges to

0 in the norm of H(b). Since X is compactly embedded in H2, we have

limn→∞ ∥pn∥2 = 0. Moreover, the compactness of Tϕ : X → H2 implies

that limn→∞ ∥Tϕpn∥2 = 0. Now (2.3) yields convergence of H(b)-norms to

zero. □

3. Direct applications: Hardy spaces and their duals

By Proposition 2.5, the containment problem X ⊂ H(b) has been re-

duced to identi�cation of some Cauchy duals and to characterizing the mul-

tipliers of H2 into the dual. In some cases this is an easy task.

3.1. Hardy spaces. If p < 2, then Hp is strictly larger than H(b) (which

is a subset of H2), but if p ≥ 2, then the containment Hp ⊆ H(b) might

hold. For p = 2 equality holds if and only if ϕ = b/a is bounded in D. This
result goes back to Sarason and can be deduced from a comparison of the

reproducing kernels of the involved spaces.

For �nite p > 1, the Cauchy dual of the Hardy space Hp is simply Hq,

where q = p
p−1

is the Hölder conjugate index. According to our multiplier

criterion, to understand when Hp ⊂ H(b) holds, we need to characterize the

space of multipliers from H2 to Hq. The following proposition, well-known

and elementary, does this job.

Proposition 3.1. If 1 < q < 2, then the multiplication operator Mϕ :

H2 → Hq is bounded if and only if ϕ ∈ Hr, where r = 2q
2−q . The operator

Mϕ : H2 → Hq is not compact unless ϕ ≡ 0.

Proof. The su�ciency of the condition ϕ ∈ Hr follows readily from Hölder's

inequality. Conversely, if Mϕ : H2 → Hq is bounded, then clearly ϕ de�nes

also a multiplier from L2(T) to Lq(T). Consequently, for some constant

C > 0 and the Hölder conjugate index p = q
q−1

, we have∫
T
ϕhg dm ≤ C∥h∥2∥g∥p, h ∈ L2(T), g ∈ Lp(T).
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If t = 2p
p+2

is the Hölder conjugate to r, then one checks readily that each

f ∈ Lt(T) is of the form f = hg for some h ∈ L2(T) and g ∈ Lp(T), with
∥f∥t = ∥h∥2∥g∥p. The above expression then shows that ϕ lies in the dual

space to Lt(T), this dual being Lr(T). Thus ϕ ∈ Hr.

As for compactness, the sequence {zn}n is weakly convergent to 0 in H2,

yet the norm of ϕzn in Hq remains constant, and so Mϕ : H2 → Hq cannot

be compact unless ϕ ≡ 0. □

We have reached our �rst main result, describing containment of Hardy

spaces in H(b).

Corollary 3.2. For p ∈ (2,∞), we have that Hp ⊂ H(b) if and only if

ϕ = b/a ∈ Hp̃, where

p̃ =
2p

p− 2
=

2q

2− q
.

The containment Hp ⊂ H(b) is never compact.

3.2. Spaces of bounded mean oscillation. Letting p → +∞ in Corol-

lary 3.2, one might guess that H∞ ⊂ H(b) if and only if ϕ ∈ H2. This fact

has been proved by Sarason in [15]. In fact, much more can be said.

Proposition 3.3. Let ϕ = b/a. The following statements are equivalent:

(i) ϕ ∈ H2,

(ii) H∞ ⊂ H(b)

(iii) A := H∞ ∩ C(T) ⊂ H(b),

(iv) VMOA ⊂ H(b),

(v) BMOA ⊂ H(b).

We shall give two di�erent proofs of the containment BMOA ⊂ H(b)

given the assumption (i) above. One based on a direct analysis of (2.1), and

one making use of our multiplier criterion developed earlier.

Here is the �rst proof. Recall that f ∈ BMOA if and only if it can be

expressed as

f = P+u,

where u ∈ L∞(T) and where P+ is the orthogonal projection L2(T) → H2.

Under the assumption that ϕ = b/a ∈ H2, the solution f+ to the operator

equation (2.1) is simply

f+ = P+ϕu.

Indeed, note �rst that ϕu ∈ L2(T), so that the formula above de�nes an

element f+ ∈ H2. Next, we verify that (2.1) indeed holds for this choice of

f+:

Ta(P+ϕu) = P+(aϕu) = P+(bu) = P+(bP+u) = Tbf.
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This shows that BMOA ⊂ H(b) if ϕ ∈ H2, proving (i) ⇒ (v) in Propo-

sition 3.3. The converse direction (v) ⇒ (i) follows already from Sarason's

theorem which asserts the equivalence of (i) and (ii) above, since it is well-

known that H∞ ⊂ BMOA. In fact, that all the other four statements sep-

arately imply (i) follows easily from the monomial norm formula in (2.4).

Indeed, statements (ii), (iv) and (v) all separately imply (iii), while this

statement together with the closed graph theorem gives us that

∥zn∥H(b) ≤ C∥zn∥A = C

for some constant C > 0. This proves (i), since by (2.4), we have

∥ϕ∥2 + 1 = lim
n→∞

∥zn∥H(b).

This concludes the proof of Proposition 3.3.

Here is a second proof of the containment BMOA ⊂ H(b) under the

condition (i). We start by noting that if we set X = VMOA, then it is

well-known from the works of Fe�erman and Sarason that X∗ = H1, and so

by our Proposition 2.5, the containment VMOA ⊂ H(b) is equivalent to ϕ

being a multiplier from H2 into H1. We are assuming that ϕ ∈ H2, and it is

well-known that H2 · H2 = H1. Thus we obtain VMOA ⊂ H(b). Now, it is

a fact that each function f ∈ BMOA can be approximated by a sequence

of polynomials {pn}n in the following way: pn(z) → f(z) for all z ∈ D, and

sup
n

∥pn∥VMOA = sup
n

∥pn∥BMOA <∞

(for instance, if f = P+u, u ∈ L∞(T), then we may take pn = P+un, where

un are the Cesàro means of u). But then, supn ∥pn∥H(b) < ∞ follows from

the closed graph theorem and the containment VMOA ⊂ H(b), and so f

can be identi�ed as a weak limit of the polynomials {pn}n, as it was done
in the proof of Corollary 2.4. Thus f ∈ H(b), and we have another proof of

the implication (i) ⇒ (v) in Proposition 3.3 above.

Clearly, this last argument can be formulated in a more general setting.

For any Banach space of analytic functions in D we assume that the evalu-

ations at points of D are bounded in the norm of X.

Proposition 3.4. Let X and H be, respectively, a Banach and a Hilbert

space of analytic functions in D. If X ⊂ H, then we also have X ⊂ H,

where

X := {f ∈ Hol(D) : f(z) = lim
z∈D

pn(z), pn ∈ P , sup
n

∥pn∥X <∞}.
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4. More complicated matters

Let D denote the Dirichlet space. Explicit and readily-veri�able condi-

tions ensuring D ⊂ H(b) are more di�cult to reach than their analogues for

Hardy spaces.

4.1. Weighted spaces of Taylor series. The condition for the contain-

ment D ⊂ H(b) is the same as a corresponding condition for a larger

family of Hilbert spaces H2(w) to which the Dirichlet space belongs. Here

w = {wn}n≥0 is an non-decreasing sequence of positive numbers, and

H2(w) := {f ∈ Hol(D) : ∥f∥H2(w) <∞},

where the norm is de�ned in terms of the sequence {fn}n≥0 of Taylor coef-

�cients of f , centered at z = 0, by the expression

∥f∥2H2(w) :=
∞∑
n=0

wn|fn|2 <∞.

The Cauchy dual of H2(w) is a space H2(w∗) of the same type, with

w∗ := {1/wn}n≥0.

Here we need to implicitly assume that limn→∞w
1/n
n = 1 in order for H2(w)

and H2(w∗) to consist of power series with radius of convergence at least 1

(that is, to consist of functions analytic in D).
Our multiplier criterion in Proposition 2.5 is particularly useful if the

norm on H2(w∗) can be realized using an equivalent integral norm of the

form

(4.1) ∥f∥2H2(w∗) ≃
∫
D
|f(z)|2G(|z|)dA(z) =

∞∑
n=0

|fn|2Gn

where G : (0, 1) → (0,∞) is some positive function and

(4.2) Gn := 2

∫ 1

0

G(r)r2n+1dr

is the sequence of moments of G. Above �≃� means that the two expres-

sions are of comparable size, independently of f . We have the following

consequence of our multiplier criterion.

Proposition 4.1. Let w be a weight sequence for which (4.1) holds for some

G. If ϕ = b/a, then H2(w) ⊂ H(b) if and only if

dµ(z) = |ϕ(z)|2G(|z|)dA(z)

is a Carleson measure. The embedding H2(w) ↪→ H(b) is compact if and

only if dµ(z) is a vanishing Carleson measure.
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Here, as usual, a positive measure µ on the disk D is a Carleson measure

if ∫
D
|f(z)|2dµ(z) ≤ C∥f∥22, f ∈ H2

and where C > 0 is some positive constant. In other words, µ is a Carleson

measure if we have a continuous embedding H2 ↪→ L2(µ). It is a well-known

fact (see [9, Theorem 5.6, Chap. I]) that Carleson measures are precisely

those for which, for some C > 0, we have a bound

(4.3) µ
(
S(θ0, h)

)
≤ Ch,

and where S(θ0, h) is a (curvlinear) Carleson square given by

S(θ0, h) = {z = reiθ ∈ D : |θ−θ0| < h/2, 1−r < h}, θ0 ∈ [0, 2π), h ∈ (0, 1).

A vanishing Carleson measure is one where the right-hand side of (4.3) is

improved to o(h). The vanishing condition is well-known to be equivalent

to compactness of the embedding H2 ↪→ L2(µ).

Proof of Proposition 4.1. The multiplier criterion tells us that the contain-

ment is equivalent to∫
D
|f(z)ϕ(z)|2G(|z|)dA(z) ≤ C∥f∥H2 ,

which is precisely the Carleson measure condition for dµ = |ϕ|2GdA. The
compactness statement is established similarly. □

Example 4.2. Set Gc(|z|) = exp
(
− c

1−|z|

)
for c > 0, and let w∗

c be the

sequence of moments of Gc. A rather messy computation of these moments

reveals that

(4.4) G =
⋃
c>0

H2(wc)

where G is the so-called Gevrey class consisting of functions m analytic in

D which have a Taylor series expansion m(z) =
∑∞

n=0mnz
n satisfying

mn = O
(
exp(−c

√
n)
)

for some c > 0. By a deep result of Davis and McCarthy from [4], the class G
consists precisely of those functions which are multipliers simultaneously for

all non-extreme spaces H(b). In particular, G ⊂ H(b) for every non-extreme

b. We may derive this weaker conclusion immediately from our criterion.

Indeed, every function ϕ = b/a ∈ N+ satis�es the estimate

log |ϕ(z)| = o
(
(1− |z|)−1), z ∈ D
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See, for instance, [19]. But then |ϕ(z)|2Gc(|z|) is bounded for every c > 0,

so clearly∫
D
|h(z)|2|ϕ(z)|2Gc(|z|)dA(z) ≤ B

∫
D
|h(z)|2dA(z) ≤ B∥h∥H2 , h ∈ H2,

where B > 0 is some constant depending on c. Thus H2(wc) ⊂ H(b) for

every c > 0 and every non-extreme b, from which it follows by (4.4) that

G ⊂ H(b).

4.2. Dirichlet space. The Dirichlet space D corresponds to H2(w) where

w = {wn}n and wn = n + 1. The Cauchy dual of D is isometrically equal

to the usual (unweighted) Bergman space, which we will denote by B and

which we recall consists of those functions analytic in D for which

(4.5) ∥f∥2B :=

∫
D
|f(z)|2dA(z) =

∞∑
n=0

|fn|2

n+ 1
<∞.

Thus D∗ = H2(w∗) has the form (4.1) with G ≡ 1. In this case, our Carleson

measure condition says that D ⊂ H(b) if and only if |ϕ|2dA is a Carleson

measure. Equivalently, the containment holds if and only if ϕ is a multiplier

from H2 into B.

Example 4.3. Let c > 0 and de�ne b := bc : D → D by the equation

(4.6) ϕc(z) =
b(z)

a(z)
=

1

(1− z)c
, z ∈ D.

Then the following statements are true.

(i) If c < 1/2, then H(b) contains D, and the embedding is compact.

(ii) If c = 1/2, thenH(b) contains D, and the embedding is not compact.

(iii) If c > 1/2, then H(b) does not contain D.

One may see that (i) above holds by directly verifying the vanishing

Carleson measure condition and appealing to Proposition 4.1. Since the

integral of dA
|1−z| over D ∩ (D(1, h)\D(1, h/2)) is controlled by a constant C

times h (here D(1, h) denotes a disk of radius h with center 1), the one

box condition (4.3) holds for dA
|1−z| with constant C ′, showing that the �rst

statement in (ii) holds. To see that the embedding corresponding to the case

c = 1/2 is not compact, it is perhaps easiest to appeal to the second part of

Proposition 5.2 below, which implies that ϕ1/2(z) = (1 − z)−1/2 cannot be

a compact multiplier from H2 to B as a consequence of it failing to satisfy

the relevant growth condition. Similarly, �rst part of Proposition 5.2 shows

that (iii) above holds.
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In the next section we will study further the above example, and show

precisely how the picture changes if the above ϕc is replaced by θϕc, where

θ is an appropriate inner function.

5. A case study: more on containment of the Dirichlet space

Let us illustrate further how di�erent the Carleson measure criterion

appearing in Section 4.2 is from that for the Hardy space appearing in

Corollary 3.2. In the latter case, only the boundary values of ϕ play a role,

while in the former case, values inside the disk seem to matter. In particular,

a question arises: to what extent does the inner factor of ϕ = b/a (equiv-

alently, inner factor of b) play a role in the corresponding containment?

Below, we work out an example.

5.1. An inner factor that helps. We will extend Example 4.3 and prove

that the inner factor of b indeed may play a critical role in the containment

of the Dirichlet space D inH(b). We will focus on the singular inner function

corresponding to a Dirac measure δ1/2 at the point ζ = 1:

(5.1) θ(z) = exp
(
− 1

2
· 1 + z

1− z

)
, z ∈ D.

We will prove the following proposition.

Proposition 5.1. Let ϕc and b = bc be as in Example 4.3, and let θ be

given by (5.1).

(i) If c < 1, then H(θb) contains D, and the embedding is compact.

(ii) If c = 1, then H(θb) contains D, the embedding not being compact.

(iii) If c > 1, then H(θb) does not contain D.

The choice of the weight 1/2 in the de�nition of θ in (5.1) is not im-

portant, and our results hold true for any positive weight used to de�ne

a similar singular inner function. With our choice, we have the convenient

formula

|θ(z)|2 = exp
(
− 1− |z|2

|1− z|2
)
, z ∈ D.

The above result should be compared to Example 4.3. The point is that

the functions ϕc appearing in Example 4.3 correspond, for c > 1/2, to mea-

sures |ϕc|2dA which violate the Carleson condition for small boxes containing

the point ζ = 1 in their closure. However, multiplying |ϕc|dA by the factor

in (5.1) remedies the situation if c ∈ (1/2, 1] (and only in that range). This

happens because of the exponential non-tangential decay of |θ(z)|2 when z
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tends to 1 inside a given Stolz angle with vertex at ζ = 1, given by

(5.2) Γα :=
{
z ∈ D :

1− |z|
|1− z|

≥ α
}
, α ∈ (0, 1).

We will carefully justify this assertion below.

5.2. Growth properties of multipliers between H2 and B. In [18,

Theorem 3.1], Stegenga established an elegant characterization of the func-

tions ϕ which are multipliers between H2 and the Bergman space B in terms

of the boundary values of the primitive of ϕ. However, his result doesn't seem

to help our particular analysis. Below we will only really need some simple

necessary conditions on ϕ to be such a multiplier. The following basic results

were known to Stegenga and have also been observed in [5]. For a proof,

one may consult [5].

Proposition 5.2. Let ϕ : D → C be an analytic function.

(i) For ϕ to be a multiplier from H2 into B, it is necessary that

|ϕ(z)| = O
(
(1− |z|)−1/2

)
.

(ii) For ϕ to be a compact multiplier from H2 into B, it is necessary that

|ϕ(z)| = o
(
(1− |z|)−1/2

)
.

Corollary 5.3. Let ϕc(z) be as in (4.6) and θ be as in (5.1).

(i) If c > 1, then θϕc is not a multiplier between H2 and B.
(ii) If c = 1, then θϕc = θϕ1 is not a compact multiplier between H2 and

B.

Proof. To prove the corollary, we need only to check that the necessary

conditions stated in Proposition 5.2 are violated. To see this, we consider

the following level set

Ct =
{
z ∈ D : |θ(z)|2 = t

}
, t ∈ (0, 1)

Setting s = − log(t), we readily compute that

Ct =
{
z = x+ iy ∈ D :

(
x− s

1 + s

)2

+ y2 =
1

(1 + s)2

}
which is a circle inside D tangent to T at the point ζ = 1. For z = x+iy ∈ Ct

we have

|1− z|2 = 1− |z|2

s
which implies

|θ(z)ϕc(z)| =
√
tsc

(1− |z|2)c/2
, z = x+ iy ∈ Ct.
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If t remains �xed and c = 1, then our above estimate implies that (1 −
|z|)1/2|θ(z)ϕc(z)| is constant as z → 1 along Ct, and therefore (ii) of Propo-

sition 5.2 shows that θϕ1 cannot be a compact multiplier between H2 and

B. If c > 1, then instead (1 − |z|)1/2|θ(z)ϕc(z)| grows to in�nity as z → 1

along Ct, and so now instead (i) of Proposition 5.2 shows that θϕc cannot

be a multiplier between H2 and B. □

It follows from part (i) of the above corollary that (iii) of Proposition 5.1

holds. Moreover, we know that the containment in (ii) in Proposition 5.1,

whether it holds or not, at least cannot be compact. We shall now verify the

corresponding Carleson measure conditions and prove the remaining part

of Proposition 5.1.

5.3. Dyadic Carleson squares. The remaining part of the proof of Propo-

sition 5.1 requires a computation which is unfortunately a bit messy. To

somewhat remedy this, we will use a dyadic system of Carleson squares in

D.
If µ is a positive measure on D, then to verify the Carleson measure

condition in (4.3) for some C > 0 it su�ces to verify that there exists a

constant C ′ > 0 such that

(5.3) µ(Sn,k) ≤ C ′2−n

for each dyadic Carleson square Sn,k. We de�ne these as

(5.4)

Sn,k = {reiθ ∈ D : θ ∈ In,k, 1−r ≤ 2−n}, n ∈ N, k ∈ {±1,±2, . . . ,±2n−1},

where In,k is the dyadic subarc of T given by

In,k = {eiθ ∈ T : 2π(k − 1)2−n ≤ θ ≤ 2πk2−n}

for positive k, and by

In,k = {eiθ ∈ T : e−iθ ∈ In,−k}

for negative k. Indeed, every Carleson square C(θ0, h) is contained in the

union of at most two such dyadic Carleson squares of side-length at most 2h,

and so (5.3) implies (4.3) with C = 4C ′. For the same reason, to verify the

vanishing Carleson measure condition for µ, it su�ces to show the left-hand

side in (5.3) is of order o(2−n).

One obvious geometric property of the dyadic Carleson system that we

shall use is the following: for some α ∈ (0, 1), the corresponding Stolz angle

Γα in (5.2) has such a wide opening that the containment

(5.5) Sn,1 ⊂
(
Γα ∪

(
∪m>n Sm,2

))



EMBEDDINGS INTO DE BRANGES-ROVNYAK SPACES 19

is satis�ed. This containment is quite obvious geometrically, and algebraically

we may verify it in the following way. Assume that z = reiθ ∈ Sn,1, but

z ̸∈ ∪m>nSm,2. We shall show that z ∈ Γα for some α which we shall com-

pute explicitly. There exists a smallest integer m > n for which z ̸∈ Sm,1.

Then, by assumption, we have that z ∈ Sm−1,1 \
(
Sm,1∪Sm,2

)
. By de�nition

of the dyadic Carleson squares in (5.4), this tells us that

2−m < 1− r = 1− |z| < 2−m+1

and

|1− z| < |1− eiθ|+ |eiθ − z| ≤ 2π2−m+1 + 2−m+1.

Thus
1− |z|
|1− z|

≥ 1

4π + 2
:= α.

Hence z ∈ Γα.

5.4. Proof of Proposition 5.1. First, we estimate the µ-measure of the

dyadic squares Sn,k which do not contain ζ = 1, i.e, we deal with Sn,k for

|k| ≥ 2.

Lemma 5.4. Let c ∈ (0, 1] and

(5.6) dµc(z) =
exp

(
− 1−|z|2

|1−z|2

)
|1− z|2c

dA(z) = |θ(z)ϕc(z)|2dA(z).

If |k| ≥ 2, then

µ1(Sn,k) = O(2−n)

while for c ∈ (0, 1),

µc(Sn,k) = o(2−n).

Proof. Let h := 2−n. First we treat the case c = 1. By symmetry, we may

assume that k is positive. It is geometrically evident that there exists a

constant D > 1 which is independent of n and k such that for z ∈ Sn,k we

have that
hk

D
≤ |1− z| ≤ Dhk, k ≥ 2.

It follows that

exp
(
− 1−|z|2

|1−z|2

)
|1− z|2

≤ D2

h2k2
exp

(
− 1− |z|2

(Dkh)2

)
, z ∈ Sn,k.
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Therefore, using polar coordinates, we readily obtain that

µ1(Sn,k) ≤
D2

h2k2

∫
Sn,k

exp
(
− 1− |z|2

(Dkh)2

)
dA(z)

=
D2

πh2k2

∫
In,k

∫ 1

1−h
exp

(
− (1− r)(1 + r)

(Dkh)2

)
r dr dθ

≤ 2D2

hk2

∫ h

0

exp
( −x
(Dkh)2

)
dx

≤ 2D4h.

Between the second and third lines we used that In,k has length 2πh. This

gives the desired estimate for c = 1. If c ∈ (0, 1), then

µc(Sn,k) =

∫
Sn,k

|1− z|2−2cdµ1(z).

Fix δ > 0. If n is so large that the diameter of Sn,k is smaller than δ/10,

then (depending on k) we will have that either Sn,k is fully contained within

a disk around ζ = 1 of radius δ, or Sn,k does not intersect a disk around

ζ = 1 of radius δ/2. In the �rst case, the above estimate, and our result for

c = 1, gives us

µc(Sn,k) ≤ δ2−2c2D4h.

In the second case, the formula (5.6) immediately gives

µc(Sn,k) ≤
22c

πδ2c
h2.

It follows that

(5.7) µc(Sn,k) ≤ max{δ2−2c2D4,
22c

πδ2c
h} · h.

Now, given ϵ > 0 we may �x δ > 0 so small that the inequality δ2−2c2D4 < ϵ

holds. With δ �xed, we may next also �x N so that whenever n > N , we

have 22c

πδ2c
h < ϵ (recall that h = 2−n). Then, for any n > N and any k, we

have

µc(Sn,k) ≤ ϵh = ϵ2−n.

That is, µc(Sn,k) = o(2−n). □

Lemma 5.5. With µc as in (5.6), we have

µ1(Sn,1) = µ1(Sn,−1) = O(2−n)

and

µc(Sn,1) = µc(Sn,−1) = o(2−n), c ∈ (0, 1).
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Proof. The estimate for c ∈ (0, 1) follows from the estimate for c = 1 in the

same way as above in the proof of Lemma 5.4, so we treat only the latter

case. Set, again, h := 2−n. By the exponential decay of |θ(z)| as z → 1

inside the Stolz angle Γα, we certainly have

sup
z∈Γα

|θ(z)ϕc(z)|2 < D

for some constant D > 0. Thus, using (5.5) and Lemma 5.4 in the form

µ1(Sm,2) ≤ A · 2−m for some A > 0, we obtain

µ1(Sn,1) ≤ Dh2 +
∑
m>n

µ1(Sm,2) ≤ Dh2 + A
∞∑
k=1

h

2k
= O(h).

□

The two above lemmas show that the measure µc de�ned in (5.6) is a

Carleson measure for c = 1, and a vanishing Carleson measure for c ∈ (0, 1).

Thus, for c ∈ (0, 1) the functions θϕc are compact multipliers between H2

and the Bergman space B, while for c = 1, θϕc is a bounded but not com-

pact multiplier between the same spaces. An application of our multiplier

criterion in Proposition 2.5 �nishes the proof of Proposition 5.1.

6. Further remarks

We conclude with a few observations about directions in which to follow

with research from here.

6.1. Other equivalences and embeddings. In Proposition 3.3, we showed

that it is equivalent for H(b) to contain any of H∞, BMOA, VMOA or

A. It seems reasonable to ask where is the limit of these equivalences, that

is, what is the largest (or smallest) space whose containment in H(b) is still

necessary (respectively, su�cient) for containment of H∞. One can also ex-

pand on the results above from the plethora of theorems known regarding

embeddings between analytic function spaces. A good and recent reference

regarding such embeddings is [13].

6.2. Multiplying the symbol by other types of functions. The ef-

fects of the inner part noted in Section 5 could in fact be due to choosing

an inadequate generalization of the situation for the embeddings of Hp or

weighted Bergman spaces. Indeed, multiplying b by any function ϕ that is

bounded in modulus by 1 will at least preserve all the corresponding embed-

dings, since H(b) ⊂ H(ϕb). A relevant question is, therefore, what functions

improve the embeddings. Contractive divisors are natural candidates there.
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Such functions admit several de�nitions, and play an essential role in ex-

tremal problems as well as in the study of invariant subspaces for the shift

operator. One can for example say ϕ is Bergman-inner (or a contractive

divisor) if it has norm 1 and ϕ ⊥ zkϕ for all k ≥ 1 (where the orthogonality

is taken in B).
There is a rather interesting connection between embeddings D ⊂ H(b)

and Bergman-inner functions. It is well-known that such a function induces

a bounded multiplication operator Mϕ : H2 → B (see, for instance, [11,

Theorem 3.3]). It is also known that if θ is a singular inner function which

is not cyclic in B, in the sense that the smallest closed subspace [θ] of

B which contains θ and is invariant for the multiplication operator Mz :

f(z) 7→ zf(z) is not the whole space, then any non-zero function ϕ in the

one-dimensional subspace [θ] ⊖Mz[θ] is Bergman-inner, and moreover we

have ϕ ∈ N , the Nevanlinna class of functions expressible as a quotient of

two bounded functions in D (see [10, Theorem 3.3]. Thus ϕ = θb
Sa

for some

Pythagorean pair of outer functions a, b, and S singular inner (it is plausible

that the singular factor S in the denominator is always trivial, but to the

best of the authors' knowledge this property of Bergman-inner functions has

not yet been established in the existing literature). Then MSϕ : H2 → B is

also bounded, Sϕ ∈ N+, and so our Proposition 2.5 implies that D ⊂ H(θb).

We have in this way associated a space H(θb) containing D to each singular

inner function θ which is not cyclic in B. A characterization of these inner

functions has been established in the deep works of Korenblum in [12] and

Roberts in [14]. Given our investigations in Section 5 on e�ects of inner

factors, a natural question is the following.

Question. Let θ be singular inner, and associate H(θb) to θ as above. Then

D ⊂ H(θb). But do we have D ⊂ H(b)?

From [10, Theorem 3.7] we deduce that if θ is given by (5.1), then the

above construction presents us with the Bergman-inner function ϕ which

satis�es

ϕ(z)

θ(z)
=
b(z)

a(z)
=

1

1− z
+ 1, z ∈ D,

from which it easily follows that D ̸⊂ H(b) (recall Example 4.3). So the

answer to the above question is negative in this particular case. Is this

typical? If so, then we will have obtained a family of examples in which

various singular inner factors θ are responsible for the containment D ⊂
H(θb).
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6.3. Multipliers. The literature on multipliers between analytic function

spaces is vast and our results could certainly bene�t from an extensive

look at multiplier properties in H(b) spaces. A likely ally is the theory of

multipliers for model spaces developed in [6].
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