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Abstract. Given a compact convex planar domain Ω with non-empty interior, the classical Neu-
mann’s configuration constant cR(Ω) is the norm of the Neumann-Poincaré operator KΩ acting
on the space of continuous real-valued functions on the boundary ∂Ω, modulo constants. We in-
vestigate the related operator norm cC(Ω) of KΩ on the corresponding space of complex-valued
functions, and the norm a(Ω) on the subspace of analytic functions. This change requires intro-
duction of techniques much different from the ones used in the classical setting. We prove the
equality cR(Ω) = cC(Ω), the analytic Neumann-type inequality a(Ω) < 1, and provide various
estimates for these quantities expressed in terms of the geometry of Ω. We apply our results
to estimates for the holomorphic functional calculus of operators on Hilbert space of the type
∥p(T )∥ ≤ K supz∈Ω |p(z)|, where p is a polynomial and Ω is a domain containing the numerical
range of the operator T . Among other results, we show that the well-known Crouzeix-Palencia
bound K ≤ 1 +

√
2 can be improved to K ≤ 1 +

√
1 + a(Ω). In the case that Ω is an ellipse, this

leads to an estimate of K in terms of the eccentricity of the ellipse.

1. Introduction

1.1. Double-layer potential. Throughout this article, Ω will denote a compact convex planar
domain with non-empty interior. If C(∂Ω) is the space of continuous functions on the boundary
∂Ω and f ∈ C(∂Ω), then its double-layer potential u is the harmonic function

(1) u(z) =
1

π

∫
∂Ω

f(σ) d arg(σ − z) =
1

π

∫
∂Ω

f(σ) Re

(
N(σ)

σ − z

)
ds, z ∈ Ωo.

Here ds = |dσ| is the arclength measure on the rectifiable curve ∂Ω, Ωo is the interior of Ω, andN(σ)
is the outer-pointing normal at the boundary point σ. The equality between the two expressions for
u(z) above follows from an elementary computation in the case that ∂Ω is sufficiently smooth. In
the general case, we interpret N(σ)(σ− z)−1 as a Borel measurable function on ∂Ω. By convexity
of the domain, both the tangent T (σ) and the normal N(σ) exist and are continuous at all but a
countable number of points σ which we will call corners, at which the discontinuity of T and N
amounts to a jump in the argument. In Appendix A we include more details regarding boundaries
of planar convex domains, and other facts mentioned below.

The Neumann–Poincaré operator appears in connection with the study of boundary behaviour
of the double-layer potential. It is known that u given by (1) has a continuous extension to ∂Ω,
and we have the representation

(2) u(ζ) = f(ζ) +KΩf(ζ), ζ ∈ ∂Ω
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Figure 1. Example domain Ω with corner of angle θζ′ at ζ
′, and a circle of radius

Rζ,σ with center m, tangent to ∂Ω at σ and passing through ζ.

where KΩ denotes the Neumann-Poincaré integral operator

KΩf(ζ) :=
1

π

∫
∂Ω

f(σ) dµζ(σ), ζ ∈ ∂Ω.

Here µζ is the probability measure

(3) dµζ = (1− θζ/π)dδζ + ρζds

where θζ can be interpreted as the angle of the aperture at the possible corner at ζ of ∂Ω, δζ is a
unit mass at the point ζ, and ρζ is the Radon-Nikodym derivative

(4) ρζ(σ) :=
dµζ

ds
(σ) :=

1

π
Re

(
N(σ)

σ − ζ

)
=

1

π
Im

(
T (σ)

σ − ζ

)
.

It is natural to use the convention that θζ = π if ζ is not a corner. This occurs precisely when µζ

assigns no mass to the singleton {ζ}. We will say that the collection of measures {µζ}ζ∈∂Ω is the
Neumann-Poincaré kernel of Ω.

The density ρζ has the following useful geometric interpretation. If σ ∈ ∂Ω\{ζ} is not a corner,
and Rζ,σ is the radius of the unique circle passing through ζ which is tangent to ∂Ω at σ, then the
equality

(5) ρζ(σ) =
1

2πRζ,σ

holds. The radius Rζ,σ may degenerate to ∞ if ζ is contained in the tangent line to ∂Ω passing
through σ. In that case we see easily that ρζ(σ) = 0, so (5) still holds. To establish the formula,
note that the center m of the circle in question is of the form m = σ − RN(σ), where the radius
R = Rζ,σ > 0 of the circle satisfies |m − ζ|2 = |(σ − ζ) − RN(σ)|2 = R2. Expanding the squares
and solving for R leads to (5).

1.2. Neumann’s configuration constant.
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1.2.1. Real configuration constant. Historically, the Neumann–Poincaré operator has been used to
solve the Dirichlet problem of finding a harmonic extension to Ωo of a given continuous function u
on ∂Ω. The extension can be obtained by finding f ∈ C(∂Ω) which solves (2). Indeed, if such an f
is found, then the extension of u to Ωo is given by the double-layer potential in (1). This naturally
leads to questions of invertibility of the operator I +KΩ appearing on the right-hand side of (2),
and consequently to the introduction of the Neumann’s configuration constant, which we shall soon
define as the operator norm of KΩ acting on an appropriate space. Note that if 1 is the constant
function, then we have that KΩ1 = 1, since each µζ is a probability measure. Thus KΩ can be
naturally defined as a linear mapping on the quotient space C(∂Ω)/C1. The classical approach
is to instead consider KΩ as acting on the space of real-valued continuous functions CR(∂Ω), in
which case the corresponding quotient space CR(∂Ω)/R1 is endowed with the norm

(6) ∥g + R1∥∂Ω := max
ζ,ζ′∈∂Ω

|g(ζ)− g(ζ ′)|
2

= min
r∈R

max
ζ∈∂Ω

|g(ζ)− r|.

It is not hard to see that the two above expressions for the norm of the coset g+R1 are equivalent:
they are both equal to half of the length of the interval g(∂Ω) := {g(∂Ω) : ζ ∈ ∂Ω}, the image of
g. The right-most expression is minimized by choosing r to be the mid-point of the image interval.
Neumann’s (real) configuration constant cR(Ω) is defined as the operator norm of KΩ acting on
the quotient space CR(∂Ω)/R1:

(7) cR(Ω) := ∥KΩ : CR(∂Ω)/R1 → CR(∂Ω)/R1∥.
It is not hard to see that we may let KΩ instead act from CR(∂Ω) into the quotient CR(∂Ω)/R1
without affecting the operator norm. Since each measure µζ is of unit mass, we have 0 ≤ cR(Ω) ≤ 1.
If

∥f∥∂Ω := sup
ζ∈∂Ω

|f(ζ)| ≤ 1,

then

|KΩf(ζ)−KΩf(ζ
′)| ≤ ∥µζ − µζ′∥,

where we use the total variation norm (functional norm) on the right-hand side. By varying f over
the unit ball of CR(∂Ω) and ζ, ζ ′ over ∂Ω, we obtain the important relation

(8) cR(Ω) := sup
ζ,ζ′∈∂Ω

∥µζ − µζ′∥
2

.

This expression for cR(Ω) will play a fundamental role in our study.

1.2.2. Neumann’s lemma. From (8) we can immediately deduce that cR(Ω) = 1 in the case that Ω
is a triangle or a convex quadrilateral. Indeed, in those cases one sees from (3) and (4) that if ζ1
and ζ2 are corners of Ω (opposing, in the case of the quadrilateral) then µζ1 and µζ2 are mutually
singular, and so ∥µζ1 − µζ2∥ = 2, implying cR(Ω) = 1. Neumann’s lemma, which appears initially
in Neumann’s book [13], states that the cases of the triangle and quadrilateral are exceptional.
For any other type of domain we have the strict inequality cR(Ω) < 1. See [16] for a proof of
this claim by Schober, and the curious history of incomplete attempts at a valid proof in full
generality. Neumann’s lemma implies the invertibility of I + KΩ on CR(∂Ω)/R1, and thus the
solvability of the Dirichlet problem on a convex domain Ω which is not one of the two exceptional
cases. The remaining cases can be handled by considering instead powers of KΩ. See, for instance,
[12, Theorem 3.8], [5, Proposition 7], or the article [15], which contains also an exposition of the
double-layer potential and Neumann’s lemma.

At the other extreme, we have cR(Ω) = 0 if and only if Ω is a disk. This result will be proved
in Section 5.
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1.3. Complex and analytic configuration constants.

1.3.1. Two new configuration constants. In the present article we will discuss certain applications
of the double-layer potential to operator theory which motivate the definition of the complex
configuration constant

(9) cC(Ω) := ∥KΩ : C(∂Ω)/C1 → C(∂Ω)/C1∥.
The difference between (7) and (9) is that the latter is the norm of KΩ on the larger space of
complex-valued functions. As a consequence, we have cR(Ω) ≤ cC(Ω) ≤ 1. There is a principal
difference between the geometric interpretations of the norms in the quotient spaces CR(∂Ω)/R1
and C(∂Ω)/C1. In the former case, as we have already noted, the norm (6) of the coset represented
by the real-valued function g is equal to half of the length of the image of g, this image being an
interval on the real line R. In the case of complex-valued g, the quotient norm

(10) ∥g + C1∥∂Ω := min
λ∈C

max
ζ∈∂Ω

|g(ζ)− λ|

can instead be interpreted as the radius of the smallest disk containing the image of g. A crucial
difference is that we lose the ability to estimate the norm of the coset g + C1 by considering the
quantities |g(ζ)− g(ζ ′)| only. This is the essence of why new tools are required to treat this case.

We will also study an analogous analytic constant, which is the norm of the operator KΩ

restricted to the subspace of analytic functions in C(∂Ω). More precisely, we let A(Ω) be the space
of functions which are continuous in Ω and analytic in Ωo. Each function in A(Ω) has a unique
restriction to ∂Ω, and thus A(Ω) can be naturally identified with a subspace of C(∂Ω). We define
the analytic configuration constant as

(11) a(Ω) := ∥KΩ : A(Ω)/C1 → C(∂Ω)/C1∥.
The space A(Ω) is not invariant under KΩ, but we do have that KΩf is the complex conjugate of a
function in A(Ω) (in [4, proof of Lemma 2.1] this claim is established for Ω with smooth boundary,
but the same argument works in general). Clearly, we have the inequality a(Ω) ≤ cC(Ω). We note

also that if Ω̃ is the image of Ω under an affine transformation of the plane, then the configuration
constants of the two domains are equal. We shall verify this claim in Section 6.

1.3.2. An application to functional calculi. Given an operator T on a Hilbert space H with nu-
merical range

W (T ) := {⟨Tx, x⟩H : x ∈ H, ∥x∥H = 1},
we are interested in the optimal constant K > 0 in the inequality

(12) ∥p(T )∥ ≤ K · sup
z∈W (T )

|p(z)| = K∥p∥W (T ),

where p is an analytic polynomial, and the left-hand side is the operator norm of p(T ) acting on
H. More generally, if W (T ) in (12) is replaced by an arbitrary domain Ω, and if the corresponding
inequality holds for someK, then we say that Ω is aK-spectral set for T . Von Neumann’s inequality
says that the unit disk is a 1-spectral set for any contraction T , and a result of Okubo-Ando from
[14] says that any disk containing W (T ) is a 2-spectral set for T .

The numerical range W (T ) is a bounded convex subset of the plane, its closure W (T ) contains
the spectrum σ(T ) of T , and it has non-empty interior in the case that T is not a normal operator
(see, for instance, [9, Chapter 1]). For normal operators, the bound (12) with constant K = 1 is a
consequence of the spectral theorem, and it suffices to take the supremum on the right-hand side
over the smaller set σ(T ). For general T , even establishing the existence of a bound as in (12) is
a non-trivial task. A result of Deylon-Deylon from [5, Theorem 3] establishes the existence of the
bound, and shows that K can be chosen depending only on the area and the diameter of W (T ).
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r = 1

g(ζ1)

g(ζ2)

g(ζ3)

Figure 2. A triangular image of a complex-valued function g contained in a disk
of radius 1, with three points on the boundary of a disk.

The remarkable work of Crouzeix in [3] establishes that (12) holds with K ≤ 11.08. A subsequent
work of Crouzeix and Palencia in [4] improves the estimate to K ≤ 1+

√
2. The Neumann–Poincaré

operator appears as an essential tool in all of the mentioned works. The standing conjecture of
Crouzeix from [2] is that the bound holds with K = 2. This bound is presently known to hold in
the case H being of dimension 2, and has been established by Crouzeix in [2].

Our interest in the new notions of configuration constants is inspired by a recent work of Schwen-
ninger and de Vries in [17], where bounds for general homomorphisms between uniform algebras
and the algebras of bounded linear operators are studied. In Section 6 we will combine their
arguments with the methods of Crouzeix-Palencia to obtain the following estimate:

(13) ∥p(T )∥ ≤
(
1 +

√
1 + a(W )

)
∥p∥W , W := W (T ).

For instance, if W is a disk, then a(W ) = 0, which gives the Okubo-Ando result mentioned
above. In [17], Schwenninger and de Vries recovered this result also. The estimate (13) is our
motivation for the following investigation of the configuration constants cR(Ω), cC(Ω) and a(Ω),
and the relations between them.

1.4. Main results.

1.4.1. Relation between the real and complex constants. Consider the situation in Figure 2, where
the triangular image of the complex-valued function g : ∂Ω → C is contained in a disk of radius
1, and intersects the boundary circle of the disk in three distinct points. The three-point set
{g(ζ1), g(ζ2), g(ζ3)} is not contained in any open half-circle of the boundary, and it follows from
a simple geometric argument (which we shall present in the proofs below) that ∥g + C1∥∂Ω = 1.
However, the sides of the triangular image of g are all of lengths strictly less than 2, and this
implies that

∥g + C1∥∂Ω = 1 > max
ζ,ζ′∈∂Ω

|g(ζ)− g(ζ ′)|
2

.

If such a function g lies in the image of the unit ball of C(∂Ω) under the Neumann–Poincaré
operator KΩ for some domain Ω which satisfies cR(Ω) < 1, then a strict inequality cR(Ω) < cC(Ω)
occurs. Our first main result excludes this possibility, and so establishes the simplest possible
relation between the real and complex configuration constants.
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Theorem 1. The equality
cR(Ω) = cC(Ω)

holds for every compact convex domain Ω with non-empty interior.

It follows that every considered domain has a well-defined configuration constant c(Ω), which
is equal to the operator norm of KΩ on C(∂Ω)/C1, and which can be computed according to the
right-hand side of (8). An important consequence of this result is the inequality

(14) a(Ω) ≤ c(Ω) = sup
ζ,ζ′∈∂Ω

∥µζ − µζ′∥
2

,

which, as we shall soon see, has some interesting consequences.

Theorem 1 doesn’t appear nearly as straightforward to prove as it is to state, and the proof
takes up a large portion of the article. However, the only property of the Neumann-Poincaré
operator used in the proof is that its integral kernel {µζ}ζ∈∂Ω consists of real-valued measures.
In fact, the theorem will be deduced as a corollary of a result which we call the Three-measures
theorem, and which is a general statement regarding the geometry of the space C(X) of continuous
functions on a compact Hausdorff space X. This result, which we discuss and prove in Section 2,
puts a restriction on the possible configurations of point sets in the plane which arise as values of
a collection of real-valued functionals on C(X).

1.4.2. Analytic Neumann’s lemma. Note that the above estimate in (14), together with Neumann’s
lemma, implies that a(Ω) < 1 whenever Ω is not a triangle or a quadrilateral. This can be improved,
for we have an analytic version of Neumann’s lemma, in which no exceptional cases occur.

Theorem 2. The strict inequality
a(Ω) < 1

holds for every compact convex domain Ω with non-empty interior.

Our proof of Theorem 2 is much different from the one given by Schober in his proof of the real
Neumann’s lemma in [16], but it works also in the real context. At the end of Section 4 we show
how our technique leads to a different proof of Neumann’s lemma.

Together with the estimate (13), Theorem 2 shows that for any fixed operator T : H → H, the
optimal constant in (12) is always strictly smaller than 1+

√
2. This improves the Crouzeix-Palencia

bound, although by an indefinite amount. More precisely, we have

∥p(T )∥ ≤ KW ∥p∥W
with a constant

KW < 1 +
√
2

which depends only on the shape of W = W (T ), and not on the operator T itself. We show in
Section 5 that no better universal bound can be obtained by means of the analytic configuration
constant: for any ϵ > 0 there exists a “thin” quadrilateral Ωϵ for which we have a(Ωϵ) > 1− ϵ.

1.4.3. Estimates for the configuration constants. In Section 5 we present also other computations
and estimates for the configuration constants. Surprisingly, in the case of an elliptical domain, the
configuration constant is computable exactly, and we obtain

c(Ωa,b) =
2

π
arctan

(1
2

∣∣∣ b
a
− a

b

∣∣∣) =
2

π
arctan

(1
2

e2√
1− e2

)
where a and b are lengths of the semi-axes of the ellipse Ωa,b, and e is the eccentricity of the ellipse,

given by e :=
√
1− b2/a2 in case that a ≥ b. This fact, together with Theorem 1, estimate (13),

and the inequality a(Ω) ≤ c(Ω), has the following consequence.
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Corollary 3. Let T : H → H be a bounded linear operator on a Hilbert space H with numerical
range contained in (or equal to) the ellipse Ωa,b. Then, for every polynomial p, we have

∥p(T )∥ ≤ K(a, b)∥p∥Ωa,b
.

where

K(a, b) := 1 +

√
1 +

2

π
arctan

(1
2

∣∣∣ b
a
− a

b

∣∣∣).
Note that the function a 7→ K(a, 1) is continuous and increasing for a ≥ 1, and we have

lim
a→∞

K(a, 1) = 1 +
√
2, lim

a→1
K(a, 1) = 2.

Hence the estimate in Corollary 3 gets worse as the eccentricity of the ellipse Ωa,b grows, and
approaches the Crouzeix-Palencia bound in the limit a → ∞. On the other hand, as a → 1, the
eccentricity of the ellipse Ωa,1 tends to 0. The estimate is then close to the conjectured optimal
bound K = 2 and coincides with the Okubo-Ando bound for a = 1, in which case the domain is a
disk. From this perspective, Corollary 3 may be interpreted as an elliptical generalization of the
Okubo-Ando estimate.

For many other types of domains, the exact value of c(Ω) is inaccessible. To help the situation,
we establish an integral estimate which gives an upper bound on c(Ω) in terms of the curvature
of ∂Ω, roughly speaking. For a fixed σ which is not a corner of ∂Ω, recall the definition of Rζ,σ in
(5), and consider

(15) RΩ(σ) := sup
ζ∈∂Ω

Rζ,σ.

If κ(σ) is the curvature of ∂Ω at σ, then RΩ(σ) is at least as large as the radius of curvature

(16) 1/κ(σ) = lim
ζ→σ

Rζ,σ,

which is also the radius of the osculating circle at σ. Geometrically, RΩ(σ) is the radius of the
smallest disk tangent to ∂Ω at σ which contains Ω, if such a disk exists, and it is equal to ∞
otherwise. The latter case occurs, for instance, if σ lies on a straight line segment contained in ∂Ω.
However, if ∂Ω is sufficiently curved on a segment of ∂Ω, then RΩ will be bounded above there.
We obtain in such a situation a non-trivial upper bound on c(Ω).

Theorem 4. With the above notation, we have the estimate

c(Ω) ≤ 1− 1

2π

∫
∂Ω

ds

RΩ
.

The result implies spectral constant estimates similar to the one in Corollary 3 above. It also
generalizes some similar results in the literature. See Section 5 for further details and examples.

1.4.4. An unresolved matter. We have mentioned above that c(Ω) = 0 if and only if Ω is a disk.
With some additional effort, we will show in Section 5 that the condition a(Ω) = 0 also characterizes
disks. In this case, we have the equality a(Ω) = c(Ω). It is natural to ask whether other domains
exist for which the equality occurs, or if the case of the disk is exceptional.

Question. Do we always have the strict inequality

a(Ω) < c(Ω)

whenever Ω is not a disk?

As a consequence of Theorem 2 and the exceptional cases of Neumann’s lemma, we see that the
strict inequality holds whenever Ω is a triangle or a quadrilateral. The authors have not been able
to confirm that the inequality holds in any other examples.
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1.5. Notations. Some of our notation has already been introduced above. For a continuous
function f defined on a set X, we denote by ∥f∥X the supremum of |f | over X. For cosets of the
form f + C1 we use the convention

∥f + C1∥X := inf
λ∈C

∥f + λ∥X ,

with similar convention for real-valued f and cosets f + R1. A norm ∥ · ∥ without a subscript
usually denotes a linear functional norm or a total variation norm of a measure. The distinction
will be unimportant and should anyway be easy to deduce from context. We use boldface letters,
such as x, to denote vectors in Rn, and plain letters, such as xj , to denote the coordinates.

2. The three-measures theorem

2.1. Definitions of relevant spaces and operators. Theorem 1 will be proved as a corollary
of our analysis of three-point configurations(

ℓ1(x), ℓ2(x), ℓ3(x)
)
∈ C3,

where x is an element of a given normed space N , and ℓ1, ℓ2, ℓ3 ∈ N ∗ are three bounded linear
functionals on N . A point configuration of this type has to satisfy certain conditions. For instance,
we must have the distance bound

|ℓj(x)− ℓk(x)| ≤ ∥ℓj − ℓk∥N ∗∥x∥N , 1 ≤ j, k ≤ 3.

Our principal interest will be in estimating the radius of the smallest disk which contains such a
three-point set.

In order to use the tools of functional analysis, we will formulate our problem as one of estimating
the norm of an operator between normed spaces. To this end, we use the space C3 of triples of
complex numbers, and we equip it with the following norm:

(17) ∥(a, b, c)∥∞ := max{|a|, |b|, |c|}.
Similarly to our previous notational conventions, we shall set 1 := (1, 1, 1) ∈ C3. The quotient
norm in the quotient space C3/C1 satisfies

∥(a, b, c) + C1∥∞ := min
λ∈C

max{|a− λ|, |b− λ|, |c− λ|},

and it has the geometric interpretation adequate to our problem: it is the radius of the smallest
disk containing the three point set {a, b, c}. Given a normed space N and three linear functionals
ℓ1, ℓ2, ℓ3 ∈ N ∗, we introduce the linear operator L : N → C3/C1 defined by

(18) Lx :=
(
ℓ1(x), ℓ2(x), ℓ3(x)

)
+ C1.

With these conventions, each three-point configuration
(
ℓ1(x), ℓ2(x), ℓ3(x)

)
is contained in a disk

of radius at most ∥L∥N→C3/C1 · ∥x∥N . We want to estimate the operator norm ∥L∥N→C3/C1.

2.2. Statement of the theorem. Without any information regarding the space N or the func-
tionals ℓ1, ℓ2, ℓ3, the optimal estimate is

(19) ∥L∥N→C3/C1 ≤ 1√
3
max
j,k

∥ℓj − ℓk∥.

Indeed, we see that we cannot do better by choosing N = C, x = 1, and the functionals (scalars)
to be the vertices of an equilateral triangle inscribed in the unit circle. For instance,

ℓ1 = 1, ℓ2 = −1/2 + i
√
3/2, ℓ3 = −1/2− i

√
3/2.

The sides of the triangle have the common length equal to |ℓi − ℓj | =
√
3, and the smallest disk

containing the three points ℓi(x) = ℓi is the unit disk itself. Thus, in this case, (19) holds with
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equality. The estimate holds in general as a consequence of Jung’s theorem, which appeared first
in [10], and which in the context of the plane says that any set of diameter d is contained in a
disk of radius d/

√
3. In our setting d ≤ maxj,k ∥ℓj − ℓk∥N ∗ , and so the estimate (19) follows from

Jung’s theorem.

In our intended application, the role of the space N is played by C(X), the Banach space of
continuous functions on a compact Hausdorff space X, and the functionals are given by integration
against real-valued measures

f 7→ µj(f) :=

∫
X
f dµj .

It turns out that the three-point configurations which arise in this way are contained in disks of
radius smaller than predicted by Jung’s theorem. The main result of the section is the following.

Theorem 5. Let C(X) be the space of continuous functions on a compact Hausdorff space X,
and L : C(X) → C3/C1 be the operator in (18) defined by three functionals induced by three finite
real-valued Borel measures µ1, µ2, µ3. Then

(20) ∥L∥C(X)→C3/C1 =
1

2
max
j,k

∥µj − µk∥.

It is the ”≤” estimate in (20) that is the critical one. The lower bound ”≥” follows from the
definition of the functional norm

1

2
∥µj − µk∥ =

1

2
sup

f :∥f∥X=1
|µj(f)− µk(f)| ≤ ∥L∥C(X)→C3/C1.

We will spend the rest of the section on proving Theorem 5. The outline of the proof is as
follows. We will first use duality to formulate the problem in terms of the adjoint operator L∗

between the dual spaces. Next, a discretization will help us reduce the dual problem to a finite-
dimensional optimization problem. Finally, we will solve the finite-dimensional problem by the use
of techniques of convex analysis.

Before proceeding, we remark that the natural generalization of the above theorem to an arbi-
trary n-tuple of real-valued measures is valid. See Theorem 15 below.

2.3. Dual problem. Let us denote by Y the space C3/C1 equipped with the norm in (17). Then
the dual space Y ∗ is the two-dimensional space of three-tuples (α, β, γ) of complex numbers which
satisfy

α+ β + γ = 0,

and the norm on Y ∗ is given by

∥(α, β, γ)∥1 := |α|+ |β|+ |γ|.
In the case N = C(X), the dual space (C(X))∗ is just the space of finite Borel measures on X.
The adjoint operator L∗ : Y ∗ → N ∗ is then given by

L∗ : (α, β, γ) 7→ αµ1 + βµ2 + γµ3

and the estimate (20) is equivalent to

(21) ∥αµ1 + βµ2 + γµ3∥ ≤ |α|+ |β|+ |γ|
2

max
j,k

∥µj − µk∥.

Since α+ β = −γ and (α+ β + γ)µ3 = 0, we may rewrite the above inequality into

(22) ∥αν1 + βν2∥ ≤ |α|+ |β|+ |α+ β|
2

max
{
∥ν1∥, ∥ν2∥, ∥ν1 − ν2∥

}
where

ν1 := µ1 − µ3, ν2 := µ2 − µ3.
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Note that ν1 and ν2 are real-valued if µ1, µ2, µ3 are real-valued. Theorem 5 is thus a consequence
of the following slightly more general statement in which the topological structure of X does not
play a role.

Proposition 6. Let ν1 and ν2 be two finite real-valued measures on a measurable space X. Then
for any complex numbers α, β we have the inequality

(23) ∥αν1 + βν2∥ ≤ |α|+ |β|+ |α+ β|
2

max
{
∥ν1∥, ∥ν2∥, ∥ν1 − ν2∥

}
,

where the norm on the right-hand side is the total variation norm ∥µ∥ := |µ|(X).

In our next step, we shall simplify the problem further, and show that Proposition 6 can be
established by considering finite sets X only.

2.4. Discretization. With notations as in Proposition 6, set σ := |ν1|+ |ν2|. Then σ is a positive
finite measure on X, and by the Radon–Nikodym theorem we have dν1 = f dσ and dν2 = g dσ,
where f, g are bounded real measurable functions on X. For a moment, let ∥ ·∥σ,1 denote the norm

∥f∥σ,1 :=
∫
X
|f | dσ.

Then Proposition 6 is equivalent to the inequality

(24)

∫
X
|αf + βg| dσ ≤ |α|+ |β|+ |α+ β|

2
max

{
∥f∥σ,1, ∥g∥σ,1, ∥f − g∥σ,1

}
.

We will say that a function is simple if it only takes on a finite number of distinct values. By
standard measure theory, there exist simple measurable real functions fm, gm on X such that
fm → f and gm → g uniformly on X. Clearly ∥αfm + βgm∥σ,1 → ∥αf + βg∥σ,1. Likewise
∥fm∥σ,1 → ∥f∥σ,1 and ∥gm∥σ,1 → ∥g∥σ,1 and ∥fm − gm∥σ,1 → ∥f − g∥σ,1. Thus, if the inequality
(24) holds for each pair of simple functions, then it holds for f, g. So it suffices to establish (24)
when f, g are simple measurable real functions.

Hence, suppose that f, g are simple measurable real functions on X. We can write them as
f =

∑n
j=1 aj1Xj and g =

∑n
j=1 bj1Xj , where {X1, . . . , Xn} is a measurable partition of X, and

aj , bj ∈ R for all j. The inequality in (24) becomes

n∑
j=1

|αaj + βbj |σ(Xj) ≤
|α|+ |β|+ |α+ β|

2
max

{ n∑
j=1

|aj |σ(Xj),
n∑

j=1

|bj |σ(Xj),
n∑

j=1

|aj − bj |σ(Xj)
}
.

Writing

xj := ajσ(Xj), x = (x1, . . . , xn)
T ∈ Rn

and

yj := bjσ(Xj), y = (y1, . . . , yn)
T ∈ Rn

we see that this becomes

∥αx+ βy∥1 ≤
|α|+ |β|+ |α+ β|

2
max

{
∥x∥1, ∥y∥1, ∥x− y∥1

}
,

where now x,y are vectors in Rn and ∥ · ∥1 denotes the usual ℓ1-norm on Rn given by

(25) ∥x∥1 :=
n∑

j=1

|xj |.

To summarize, to prove Proposition 6 and consequently to prove Theorem 5, it suffices to establish
the following discrete result.
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Proposition 7. Let n ≥ 1 and x,y ∈ Rn. Then for all complex numbers α, β we have the
inequality

(26) ∥αx+ βy∥1 ≤
|α|+ |β|+ |α+ β|

2
max

{
∥x∥1, ∥y∥1, ∥x− y∥1

}
.

This reduction of the problem to the finite-dimensional setting allows us to use the tools of
convex analysis.

2.5. Optimization over a convex set. Consider the set

(27) Cn :=
{
(x,y) ∈ Rn × Rn : ∥x∥1 ≤ 1, ∥y∥1 ≤ 1, ∥x− y∥1 ≤ 1

}
.

Thus Cn is a compact convex polytope in Rn × Rn, and so it has a finite number of extreme
points. That is, points of Cn which do not lie in the interior of any line segment in Cn. A well-
known theorem of Carathéodory says that each point of a compact convex polytope is a convex
combination of its extreme points.

Lemma 8. In order to establish Proposition 7, it suffices to show that the inequality (26) holds
for every extreme point of Cn.

Proof. Let us fix α, β ∈ C and (x,y) ∈ Rn ×Rn. By the homogeneity of the inequality in (26), we
may assume that

(28) max
{
∥x∥1, ∥y∥1, ∥x− y∥1

}
= 1.

Then (x,y) ∈ Cn and so we may express it as a convex combination of the extreme points of Cn,
namely

x =
m∑
k=1

tke
k, y =

m∑
k=1

tkf
k

where ek ∈ Rn, fk ∈ Rn, the pairs (ek, fk) are extreme points of Cn, tk > 0, and
∑m

k=1 tk = 1.

Note that since (ek, fk) is an extreme point of Cn, we must have

max
{
∥ek∥1, ∥fk∥1, ∥ek − fk∥1

}
= 1.

Since we are assuming that (26) holds for extreme points, we can estimate

∥αx+ βy∥1 ≤
m∑
k=1

tk∥αek + βfk∥1

≤
m∑
k=1

tj
|α|+ |β|+ |α+ β|

2
max

{
∥ek∥1, ∥fk∥1, ∥ek − fk∥1

}
=

|α|+ |β|+ |α+ β|
2

m∑
k=1

tk

=
|α|+ |β|+ |α+ β|

2
.

Recalling our normalization in (28), this is the desired estimate in (26). □

From the above lemma and our sequence of reductions above, it follows that in order to prove
Theorem 5 it suffices show that the inequality (26) holds at every extreme point of the polytope Cn.
Proposition 9 below characterizes these extreme points by partitioning them into three equivalence
classes.
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Note that Cn is invariant under the following linear symmetries:{
x′j := xπ(j)
y′j := yπ(j)

(29)

where π is any permutation of {1, 2, . . . , n},{
x′j := ϵjxj

y′j := ϵjyj
(30)

for any choice of ϵ1, . . . , ϵn ∈ {−1, 1}, {
x′ := y

y′ := x
(31)

and {
x′ := x

y′ := x− y
(32)

Denote by Gn the group generated by these symmetries. As these symmetries are linear automor-
phisms of Rn × Rn, it is clear that Gn leaves invariant the set of extreme points Cn. We say that
two extreme points of Cn are Gn -equivalent if there is an element of Gn mapping one of them to
the other. Thus the action of Gn on Cn partitions the set of extreme points of Cn into a finite
number of equivalence classes. Note that if the inequality (26) holds for some (x,y) ∈ Cn, then it
holds also for any point of Cn in the orbit of (x,y) under the group action of Gn on Cn.

The extreme points of Cn are identified in the following proposition.

Proposition 9. If n ≥ 3, then every extreme point (x,y) of Cn is Gn-equivalent to one of the
pairs 

1
0
0
0
...
0


,



1
0
0
0
...
0


and



1
0
0
0
...
0


,



1/2
1/2
0
0
...
0


and



1/2
1/2
0
0
...
0


,



1/2
0
1/2
0
...
0


.

One can readily check that each of the three above pairs really is an extreme point of Cn. We
omit the proof, since we do not actually need this fact. In the case that n = 1, the same result
holds, but only the first kind of pair can arise. Likewise, if n = 2, the same result holds, but only
the first two types of pairs can arise.

We will prove Proposition 9 in Section 2.6. For now let us see how Theorem 5 follows. In order
to verify (26) for all extreme points of Cn, it suffices to verify the inequality for the three pairs of
vectors appearing in Proposition 9. This is an easy task. For instance, if (x,y) is the second pair
in Proposition 9, then we have

∥αx+ βy∥1 = |α+ β/2|+ |β|/2
= |α/2 + α/2 + β/2|+ |β|/2
≤ |α+ β|/2 + |α|/2 + |β|/2.

The inequality for the other two pairs is verified similarly. Then from Lemma 8 we conclude that
Proposition 7 holds, from which Theorem 5 follows by the earlier reduction.

It remains to prove Proposition 9.
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2.6. Extreme points of the polytope. In the proof of Proposition 9, the group Gn generated
by the symmetries (29)-(32) will be extensively used. In particular we will use the property that
(x,y) is an extreme point of Cn if and only if some extreme point of Cn is Gn-equivalent to it.
Moreover, the following two observations will be useful to single out.

Lemma 10. If for a pair (x,y) ∈ Cn there exists two distinct indices j, k such that

xj > 0, yj > 0, xk > 0, yk > 0

then (x,y) is not an extreme point of Cn.

More generally, if for two distinct indices j, k we have that two of the quantities xjxk, yjyk and
(xj − yj)(xk − yk) are non-zero and have the same sign, then (x,y) is not an extreme point of Cn.

Proof. Using the symmetry (29) we may suppose that j = 1, k = 2. Note that x1 < 1, x2 < 1, since
∥x∥1 ≤ 1. The same is true for the corresponding coordinates of y. Let d = (1,−1, 0, . . . , 0)T ∈ Rn.
It is easy to verify that if t is a real number, and |t| is sufficiently small, then we have

(x,y) + t(d,d) = (x+ td,y + td) ∈ Cn.

Thus (x,y) lies on a line segment inside Cn, and so is not an extreme point of Cn.

The more general statement follows by applications of a sequence of symmetries in (29)-(32) to
transform (x,y) satisfying the more general assumption into a point (x′,y′) where the first two
coordinates of the vectors x′ and y′ are positive. □

Lemma 11. If for a pair (x,y) ∈ Cn the vector x or y has at least three non-zero coordinates,
then (x,y) is not an extreme point of Cn.

Proof. By using symmetries (29)-(31) we may suppose that coordinates x1, x2, x3 are non-zero and
positive. If two of the coordinates y1, y2, y3 are positive, then by Lemma 10 we conclude that
(x,y) is not an extreme point of Cn. In the contrary case, two of the coordinates y1, y2, y3 are
non-negative. Then again by Lemma 10 and the symmetry (32) the pair (x,x− y) ∈ Cn is not
extreme, and thus neither is (x,y), since these two pairs are Gn-equivalent. □

We are ready to prove Proposition 9. We denote by ℓ1n the space Rn equipped with the norm
∥ · ∥1 given by (25). Recall that the extreme points of the unit ball B := {x ∈ Rn : ∥x∥1 ≤ 1} are
the vectors with precisely one non-zero coordinate, this coordinate being equal to ±1.

Proof of Proposition 9. We will split up the proof into three cases, each case corresponding to one
of the pairs in the statement of the proposition.

Case 1: At least one of the norms ∥x∥1, ∥y∥1, ∥x− y∥1 is strictly less than 1. We will show
that in this case (x,y) is Gn-equivalent to the first pair in the statement of the proposition.

By applying a suitable combination of symmetries (29)-(32), we may suppose that in fact
∥x− y∥1 < 1. We claim that x must be an extreme point of the unit ball of ℓ1n. For if not, then it
lies at the midpoint of a line segment I such that ∥x′∥1 ≤ 1 for all x′ ∈ I. Since ∥x− y∥1 < 1, by
shrinking I if necessary, we also have ∥x′ − y∥1 < 1 for all x′ ∈ I. Thus I × {y} is a line segment
in Cn with interior point (x,y), contradicting the fact that (x,y) is extreme.

Likewise, y is extreme in the unit ball of ℓ1n. Applying a suitable symmetry, we may suppose
that x1 = 1 and yj = ±1 for some j, all the other entries of x and y being 0. Since we must have
∥x− y∥1 < 1, this implies that actually j = 1 and y1 = 1. Thus (x,y) is equivalent to the first
pair of vectors listed in the statement of the proposition. This concludes Case 1.

Case 2: We have ∥x∥1 = ∥y∥1 = ∥x− y∥1 = 1, and one of the vectors x, y or x− y has only
one non-zero coordinate. In this case, (x,y) will be now shown to be Gn-equivalent to the second
pair in the statement of the proposition.
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Using our symmetries, we may suppose that x = (1, 0, . . . , 0)T . Note that

∥x− y∥1 = |1− y1|+ |y2|+ . . .+ |yn| = 1

and

∥y∥1 = |y1|+ |y2|+ . . .+ |yn| = 1

force

|1− y1| = |y1|,
the unique real solution y1 to this equation being y1 = 1/2. By Lemma 11, y has only one other
non-zero coordinate, and ∥y∥1 = 1 forces this coordinate to be equal to ±1/2. Applying symmetries
(29) and (30) we conclude that (x,y) is Gn-equivalent to the second pair in the statement. This
concludes Case 2.

Case 3: We have ∥x∥1 = ∥y∥1 = ∥x− y∥1 = 1, and all of the vectors x, y and x− y have
exactly two non-zero coordinates. We will show that (x,y) is Gn-equivalent to the third pair in
the statement of the proposition.

This case is slightly more complicated than the previous two. As before, we may suppose that
x1 > 0 and x2 > 0. We claim that y1 and y2 cannot both be equal to zero. If they were, then
x− y has four non-zero coordinates, contrary to the assumption. In fact, precisely one of y1 and y2
must be non-zero. If both were non-zero, then since x− y has exactly two non-zero coordinates, we
would have x1−y1 ̸= 0 and x2−y2 ̸= 0. Then the three quantities x1x2, y1y2 and (x1−y1)(x2−y2)
would be non-zero, and Lemma 10 would imply that (x,y) is not an extreme point.

By an application of symmetries we may, in addition to x1 > 0 and x2 > 0, suppose that y1 ̸= 0,
y2 = 0 and y3 = s > 0. Since x1 + x2 = 1, we have x1 = t, x2 = 1 − t for some t ∈ (0, 1). Our
vectors thus have the following structure:

x =



t
1− t
0
0
...
0


, y =



y1
0
s
0
...
0


, x− y =



t− y1
1− t
−s
0
...
0


.

Recall that x− y has only two non-zero coordinates. Since 1 − t ̸= 0 and s ̸= 0, we conclude
from the above that t = y1. But then ∥x− y∥1 = 1 − t + s = 1, and so t = s. Finally,
1 = ∥y∥1 = t+ s = 2s shows that s = t = 1/2, and so (x,y) is Gn-equivalent to the third pair in
the statement of the proposition. □

3. Proof of Theorem 1

In addition to Theorem 5 from Section 2, we will also need some facts from plane geometry
in order to prove Theorem 1. In particular, we will need to discuss the minimum enclosing disk
problem appearing in computational geometry.

3.1. Minimal enclosing disk. Let K be a compact subset of C containing at least two points.
Among all closed disks which contain K there exists a unique one of minimal radius. We will
denote this disk by DK and call it the minimal disk for K. The radius of DK will be denoted by
R(K).

If DK is minimal for K, then the intersection K ∩ ∂DK must obviously be non-empty. In fact,
this intersection must contain at least two points, and there is also a restriction on the locations
of the points in K ∩ ∂DK .
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Figure 3. The initial disk DK is the dashed circle, and we assume that ∂DK∩K is
contained in the black thick arc. Then K will be contained in the grey disk which is
obtained from DK by first translating DK in the direction of the positive real axis,
and then slightly shrinking the translated disk. This contradicts the minimality of
DK .

Lemma 12. Let K be a compact subset of C which contains at least two points. Then the inter-
section ∂DK ∩K is not contained in any arc of ∂DK which has length strictly smaller than half of
the circumference of DK . In particular, if K ∩ ∂DK = {a, b} is a two-point set, then a and b are
antipodal on ∂DK

Proof. Seeking a contradiction, assume that ∂DK ∩K is contained in an arc of length strictly less
than half of the circumference of DK . By translation, rescaling and rotation of the setting, we may
assume that DK is the unit disk, and that ∂DK ∩K is contained in some half-space

{z ∈ C : Re z > δ}, δ > 0.

By compactness, the distance between the compact sets K and ∂DK ∩ {z ∈ C : Re z ≤ δ/2} is
positive. It follows that we may translate the disk DK in the positive direction of the real axis, and
then shrink the radius of the translated disk slightly, and the resulting disk will still contain K, yet
be of strictly smaller radius than RK . See Figure 3. This contradiction establishes Lemma 12. □

Lemma 13. Let T = {a, b, c} be a three-point set. If D is a closed disk for which T ⊂ ∂D, and
T is not contained in any arc of ∂D which is strictly smaller than half of the circumference of D,
then D = DT .

Proof. Assume, seeking a contradiction, that D ̸= DT , and so that R(T ) is strictly smaller than
the radius of D. Since ∂D is the unique circle passing through the three points a, b, c, we must
have that T ∩ ∂DT contains precisely two points. Say a, b ∈ ∂DT but c ̸∈ ∂DT . Lemma 12 implies
that a and b are antipodal on DT . By translation, rescaling and rotation, we may assume that DT

is the unit disk, a = i, b = −i, c has non-negative real part and |c| < 1. After these operations, we
have that R(T ) = 1 and the circumference of D is larger than 2π. Thus by hypothesis, surely T
is not contained in any arc of ∂D of length strictly smaller than π. But the shorter of the arcs of
∂D which contains T is then contained in {z ∈ C : 0 ≤ Re z, |z| ≤ 1}, and so this arc must have a
length smaller than π. This is a contradiction, and the lemma follows. □
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a

ãb

b̃

c

J

Figure 4. The thick arc J between a and b is the smallest containing the compact
set K. It follows that the shorter arc between the antipodal points ã an b̃ must
contain points of K.

3.2. Reduction to three-point sets. The following simple result on minimal disks makes it
possible to apply Theorem 5 to more than three measures.

Lemma 14. Let K be a compact subset of C containing at least two points. There exists a subset
T ⊂ K which contains at most three points and for which DK = DT . In particular, R(K) = R(T ).

It may be convenient to refer to Figure 4 during the reading of the proof.

Proof. If there are two points in K which are antipodal on ∂DK , then we take T to consist of those
two points. Clearly DK = DT . In the case that no pair of antipodal points of ∂DK are contained
in K, let J be the shortest closed arc of ∂DK which contains K, and let a, b ∈ J ∩ K be the
end-points of J . By Lemma 12, the length of J is strictly larger than half of the circumference of
∂DK , and so J is the longer of the two arcs between a and b. Let ã and b̃ be points on ∂DK which
are antipodal to a and b, respectively. By assumption, ã ̸∈ K, b̃ ̸∈ K. We claim that the shorter
of the two open arcs between ã and b̃ must contain points of K. If not, then the longer of the two
arcs between ã and b̃ would contain K in its interior, and this arc has the same length as J . A
routine compactness argument would lead to a contradiction to the minimality of J .

Let T = {a, b, c}, where c ∈ K is any point contained in the shorter open arc between ã and

b̃. Note that any arc containing T must contain either ã or b̃. Then such an arc contains two
antipodal points on DK , and so it has a length which is at least half of the circumference of DK .
By Lemma 13 we conclude that DK = DT . □

3.3. Finalizing the proof. We are finally ready to give a proof of the equality cR(Ω) = cC(Ω).

Proof of Theorem 1. Since cR(Ω) ≤ cC(Ω), it will suffice to show the reverse inequality. To this end,
we need to show that given f ∈ C(∂Ω) satisfying ∥f∥∂Ω ≤ 1, we have that ∥KΩf+C1∥∂Ω ≤ cR(Ω).
Since KΩf is continuous, the image K = KΩf(∂Ω) is a compact subset of C. If K consists of a
single point, then ∥KΩf + C1∥∂Ω = 0, and the proof is complete. In other case, let DK be the
minimal disk for K. We use Lemma 14 to obtain a three-point set T = {a, b, c} ⊂ K for which
R(T ) = R(K) (note that if K ∩ ∂DK contains only two points {a, b}, then we may pick c ∈ K
arbitrarily to complete T to a three-point set). The geometric interpretation of the quotient norm
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in C(∂Ω)/C1 implies that ∥KΩf + C1∥∂Ω = R(K) = R(T ). Since T is contained in the image of
KΩf , there exists ζ1, ζ2, ζ3 ∈ ∂Ω such that

(a, b, c) =
(
KΩf(ζ1),KΩf(ζ2),KΩf(ζ3)

)
.

Since KΩf(ζj) =
∫
∂Ω f dµζj , we may apply Theorem 5 to X = ∂Ω, µj = µζj for j = 1, 2, 3, and

conclude that the operator L : C(∂Ω) → C3/C1 defined by

L : f 7→
(
KΩf(ζ1),KΩf(ζ2),KΩf(ζ3)

)
+ C1

has a norm satisfying the bound (20). With ∥ · ∥∞ denoting the norm on C3/C1 given in (17), we
obtain

∥KΩf + C1∥∂Ω = R(T ) = ∥(a, b, c) + C1∥∞
= ∥Lf∥∞
≤ ∥L∥C(∂Ω)→C3/C1

≤ 1

2
max
j,k

∥µζj − µζk∥

≤ 1

2
sup

ζ,ζ′∈∂Ω
∥µζ − µζ′∥

= cR(Ω).

□

The earlier mentioned extension of Theorem 5 to an n-measures theorem is obtained by em-
ploying the same argument as in the above proof. The normed space Cn/C1 appearing below is
defined analogously to the case n = 3 treated in Section 2.1.

Theorem 15. Let C(X) be the space of continuous functions on a compact Hausdorff space X,
n ≥ 3 an integer, and L : C(X) → Cn/C1 the operator defined by

Lf =
(
µ1(f), . . . , µn(f)

)
+ C1

where µ1, . . . , µn are finite real-valued Borel measures on X. Then

∥L∥C(X)→Cn/C1 =
1

2
max
j,k

∥µj − µk∥.

Proof. We use Lemma 14 to pick a three-point subset T of K = {µj(f)}nj=1 for which we have

R(K) = R(T ), and apply Theorem 5 as in the preceeding proof. □

4. Proof of Theorem 2

4.1. Exploiting subsequences. We will argue by contradiction in order to prove Theorem 2.
That is, we will assume that there exists a convex domain Ω with a(Ω) = 1, and so that there
exists a sequence of functions (fn) in A(Ω) which satisfy

∥fn + C1∥Ω = 1

and

(33) lim
n→∞

∥KΩfn + C1∥Ω = 1.

We shall see that this leads to a contradiction. The proof technique below is different from the
one employed by Schober in [16] in his proof of Neumann’s lemma, and analyticity is used only at
the very end of the proof. In fact, we shall remark at the end of the section how our arguments
lead to a new proof of Neumann’s lemma which is different from the one in [16].
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Thus, for now, we assume merely that fn ∈ C(∂Ω), and we will derive certain consequences of
(33). In the course of the proof we shall replace the sequence (fn) by a subsequence multiple times,
and for convenience we will not be changing the subscripts. We may suppose that ∥fn∥Ω = 1, and
consequently that the images

KΩfn(∂Ω) := {KΩfn(ζ) : ζ ∈ ∂Ω}

are contained in a closed disk of radius 1 centred at the origin. For large n, this observation and
(33) forces there to be points of the image of KΩfn outside of any disk centred at the origin of
radius strictly less than 1. By exchanging fn for a unimodular multiple of itself, we may thus
assume that there exists a sequence of points (ζn) in ∂Ω for which we have

(34) lim
n→∞

KΩfn(ζn) = lim
n→∞

∫
∂Ω

fn dµζn = 1.

Using that the functions fn are bounded by 1 in modulus, and the positive measures dµζ are of
unit mass, we obtain

lim
n→∞

∫
∂Ω

|fn − 1|2dµζn = lim
n→∞

∫
∂Ω

(
|fn|2 − 2Re fn + 1

)
dµζn

≤ lim
n→∞

(
2− 2Re

∫
∂Ω

fn dµζn

)
= 0.

Recall from (3) that ρζn denotes the ds-absolutely continuous part of µζn . The above computation
implies that

(35) lim
n→∞

∫
∂Ω

|fn − 1|2ρζnds = 0.

Compactness of the boundary ∂Ω implies that we may assume convergence of the sequence (ζn)
to some points ζ ∈ ∂Ω. The following lemma shows that we may replace in (35) the densities ρζn
with the density ρζ .

Lemma 16. With notations as above, we have

(36) lim
n→∞

∫
∂Ω

|fn − 1|2ρζds = 0.

Consequently, after passing to a subsequence, we can ensure that

lim
n→∞

fn(σ) = 1

for almost every σ ∈ ∂Ω with respect to the measure ρζds.

Proof. Note that whenever σ is not a corner of ∂Ω or any of the points ζn or ζ, we have

ρζn(σ)− ρζ(σ) = (ζn − ζ) · Re N(σ)

π(σ − ζ)(σ − ζn)
.

If B = B(ζ, δ) is a disk around ζ of small radius δ > 0, then for large enough n the second factor
on the right-hand side above is bounded uniformly for σ ∈ ∂Ω \B, with exception of a countable
set. This shows uniform convergence of ρζn(σ) to ρζ(σ) for σ ∈ ∂Ω \ B, again with exception of
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0 1

Sδ

Figure 5. The unit disk in dark grey with the strip Sδ removed. The dotted circle
containing the dark grey area has a radius slightly smaller than 1.

an at most countable set. Since |fn − 1|2 ≤ 4, we obtain from (35) that

lim sup
n→∞

∫
∂Ω

|fn − 1|2ρζds ≤ lim sup
n→∞

∫
∂Ω∩B

|fn − 1|2ρζds

+ lim sup
n→∞

∫
∂Ω\B

|fn − 1|2ρζds

≤ 4

∫
∂Ω∩B

ρζds.

Since ∂Ω∩B is an arc of length which tends to 0 as the radius δ of B tends to 0, the last quantity
above can be made arbitrarily small by choosing δ small enough. This establishes (36). Basic
measure theory now implies that we may pass again to a subsequence and ensure the pointwise
convergence fn → 1 almost everywhere with respect to ρζds. □

Out next observation extracts more information from (33). Consider the strips

Sδ = {z = reit : 1− δ < r < 1, |t| ∈ [π/4, π]}, δ > 0.

These strips have a fixed large “length” but shrinking “width”. One such strip is marked in Figure
5. We claim that each one of the strips Sδ intersects the images KΩfn(Ω) non-trivially for infinitely
many indices n. For if not, then for some fixed δ > 0, we would have that Sδ∩KΩfn(∂Ω) = ∅ for all
sufficiently large n, which means that the images KΩfn(∂Ω) are entirely contained in B(0, 1) \ Sδ,
where B(0, 1) denotes the closed disk of radius 1 centred at the origin. But if ϵ1 and ϵ2 are
sufficiently small positive numbers, then B(0, 1) \ Sδ ⊂ B(ϵ1, 1 − ϵ2), a disk of radius 1 − ϵ2
centred at the point ϵ1 ∈ R. See Figure 5. Recalling the geometric interpretation of the norm
∥KΩfn +C1∥∂Ω as the radius of the smallest disk containing the image of KΩfn, we would arrive
at a contradiction to (33). Thus every strip Sδ contains points in the image of KΩfn for infinitely
many n.

Lemma 17. With notations as above, we may pass to a subsequence again, and obtain a new
sequence (ζ ′n) which converges to some point ζ ′ ∈ ∂Ω, and such that

lim
n→∞

fn(σ) = α

for some unimodular constant α ̸= 1 and for almost every σ ∈ ∂Ω with respect to the measure
ρζ′ds.



20 B. MALMAN, J. MASHREGHI, R. O’LOUGHLIN, AND T. RANSFORD

Proof. Since each strip Sδ intersects the images of KΩfn for infinitely many n, passing to a subse-
quence and a routine compactness argument produces a sequence (ζ ′n) convergent to some ζ ′ ∈ ∂Ω,
for which KΩfn(ζ

′
n) → α, with α unimodular and lying in the closure of each of the strips Sδ. Thus

α ̸= 1. We therefore merely need to repeat the previous arguments to see that, after passing to a
subsequence, we will have fn(σ) → α for almost every σ with respect to the measure ρζ′ds. □

4.2. Proof of Theorem 2. The above arguments are valid for fn ∈ C(∂Ω). However, under the
assumption of analyticity, the sequence (fn) cannot converge to two different constants on two
different sets of positive arclength measure. To make this statement precise, we appeal to the
classical theory of analytic functions in the (open) unit disk D = {z ∈ C : |z| < 1}. Here [8,
Chapter II] is an excellent reference for the claims made in the following proof.

Proof of Theorem 2. Let H∞ = H∞(D) be the space of bounded analytic functions in D, identified
as usual through boundary function correspondence with a weak-star closed subspace of the space
L∞(∂D) = (L1(∂D)∗ of bounded measurable functions on ∂D, the dual of the Lebesgue space
L1(∂D) of functions integrable on ∂D with respect to the Lebesgue measure (arclength measure)

on ∂D. It is well known that a function f̃ ∈ H∞ which vanishes on a subset of positive Lebesgue
measure on ∂D must vanish identically.

Fix some conformal mapping ϕ : D → Ω. Under the assumption that fn ∈ A(Ω), ∥fn∥Ω ≤ 1,
the functions

f̃n := fn ◦ ϕ ∈ H∞, n ≥ 1

are bounded in modulus by 1 in D. By Carathéodory’s classical theorem (see, for instance, [8,
Chapter I.3]), ϕ extends to a homeomorphism between ∂D and ∂Ω. If ∥KΩfn + C1∥Ω → 1, then
Lemmas 16 and 17 show that there exist two sets E,E′ ⊂ ∂Ω which have positive arclength
measure, such that

lim
n→∞

f̃n(λ) = 1, λ ∈ ϕ−1(E)

and
lim
n→∞

f̃n(λ) = α, λ ∈ ϕ−1(E′).

Since Ω is convex, the curve ∂Ω is rectifiable, and general theory of harmonic measures tells us
that the sets ϕ−1(E) and ϕ−1(E′) have positive Lebesgue measure (see [8, Chapter VI]). Since

L1(∂D) is separable and the functions f̃n are uniformly bounded by 1 in modulus, the usual

Helly-type selection process will produce a subsequence of (f̃n) which converges in the weak-star

topology to some function f̃ ∈ H∞. By the above pointwise convergence, we must have f̃ ≡ 1 on

ϕ−1(E) and f̃ ≡ α on ϕ−1(E′). Then the non-zero function f̃ − 1 vanishes on the subset ϕ−1(E)
of positive Lebesgue measure on ∂D. This is a contradiction, which shows that our assumption
∥KΩfn + C1∥Ω → 1 must be false. Theorem 2 follows. □

4.3. A proof of Neumann’s lemma. We indicate how one may proceed to use our above argu-
ments to obtain a proof of Neumann’s lemma, stating that c(Ω) = 1 if and only if Ω is a triangle or
a quadrilateral. We need only the following simple geometric observation regarding the densities
ρζ .

Lemma 18. Fix ζ ∈ ∂Ω. Any σ ∈ ∂Ω \ {ζ} which is not a corner of ∂Ω and which satisfies
ρζ(σ) = 0 is contained in the union of at most two line segments of ∂Ω containing ζ.

Proof. It will suffice to show that all σ satisfying the above conditions are contained in at most two
different tangent lines to Ω. To see this, recall formula (5). The condition ρζ(σ) = (2πRζ,σ)

−1 = 0
gives Rζ,σ = ∞, and so ζ is contained in the tangent line to Ω at σ. The tangent line divides the
plane C into two half-planes, one of which contains Ω. Assume that two different tangent lines, at
σ and σ′, intersect at ζ. They divide the plane C into four sectors, and by convexity precisely one
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of those sectors contains Ω. Now, any line which passes through ζ and the open sector containing
Ω must separate σ, σ′ ∈ ∂Ω. Therefore, it is not a tangent to Ω. □

Neumann’s lemma is established as follows. Assume that c(Ω) = 1. From Lemmas 16 and 17 we
see that two points ζ, ζ ′ exist for which the measures ρζds and ρζ′ds are mutually singular. From
Lemma 18 we deduce that the support of ρζds is the union of at most two line segments containing
ζ ′, and the complement of the support of ρζds is also a union of at most two line segments. Thus
∂Ω is the union of at most four line segments.

5. Examples

In this section, we compute and estimate the configuration constants for some types of domains.

5.1. Configuration constant of an ellipse. For a, b > 0, let

Ωa,b :=
{
x+ iy ∈ C :

x2

a2
+

y2

b2
≤ 1
}

be the ellipse centred at the origin with semi-axes of lengths a and b, respectively. It is quite
remarkable that the configuration constant can in this case be computed explicitly.

Proposition 19. With the above notation, we have

c(Ωa,b) =
2

π
arctan

(1
2

∣∣∣ b
a
− a

b

∣∣∣).
In order to prove the proposition, our first step is to derive an expression for the density of the

Neumann-Poincaré kernel of Ωa,b. The boundary ∂Ωa,b is parametrized by

(37) γ(t) := a cos t+ ib sin t, t ∈ [0, 2π].

Here [0, 2π] can be replaced by any interval of length 2π. Recalling formula (4) for µζ and setting
ζ = γ(s), σ = γ(t), we obtain

dµγ(s)(γ(t)) = ργ(s)(γ(t)) ds(γ(t))(38)

=
1

π
Im

(
T (γ(t))

γ(t)− γ(s)

)
|γ′(t)| dt

=
1

π
Im

γ′(t)

γ(t)− γ(s)
dt.

Using (37), this formula can be greatly simplified.

Lemma 20. With the notation above, we have

(39) dµγ(s)(γ(t)) =
1

2π

A

1 +B cos(t+ s)
dt, s, t ∈ [0, 2π],

where

A :=
2ab

a2 + b2
and B :=

b2 − a2

b2 + a2
.

The lemma is established by combining (37) and (38), and then using elementary trigonometric
identities to simplify the resulting expression.

With this formula in hand, we now evaluate the configuration constant of the ellipse Ωa,b.
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Proof of Proposition 19. Using the formulas (8) and (39), we obtain

c(Ωa,b) = sup
s1,s2∈[0,2π]

1

2

1

2π

∫
[−π,π]

∣∣∣ A

1 +B cos(t+ s1)
− A

1 +B cos(t+ s2)

∣∣∣ dt.
By the periodicity of cos, this last expression simplifies to

c(Ωa,b) = sup
s∈(0,2π)

1

2

1

2π

∫
[−π,π]

∣∣∣ A

1 +B cos(t+ s)
− A

1 +B cos(t)

∣∣∣ dt.
For the time being, let us assume that b ≥ a, so B ≥ 0. Using the fact that (39) is the density of
a probability measure for each s ∈ [0, 2π], we have

1

2

1

2π

∫
[−π,π]

∣∣∣ A

1 +B cos(t+ s)
− A

1 +B cos(t)

∣∣∣ dt
=

1

2π

∫
{t:cos t≥cos(t+s)}

( A

1 +B cos(t+ s)
− A

1 +B cos(t)

)
dt.

We readily verify that cos(t) ≥ cos(t+ s) if and only if t ∈ [−s/2, π − s/2]. Therefore

1

2

1

2π

∫
[−π,π]

∣∣∣ A

1 +B cos(t+ s)
− A

1 +B cos(t)

∣∣∣ dt
=

1

2π

∫ π−s/2

−s/2

( A

1 +B cos(t+ s)
− A

1 +B cos(t)

)
dt

=
1

2π

∫ π+s/2

s/2

A

1 +B cos(t)
dt− 1

2π

∫ π−s/2

−s/2

A

1 +B cos(t)
dt

=
1

2π

∫ π+s/2

π−s/2

A

1 +B cos(t)
dt− 1

2π

∫ s/2

−s/2

A

1 +B cos(t)
dt

=
1

2π

∫ s/2

−s/2

A

1−B cos(t)
dt− 1

2π

∫ s/2

−s/2

A

1 +B cos(t)
dt

=
1

2π

∫ s/2

−s/2

2AB cos(t)

1−B2 cos2(t)
dt.

It is clear that this last integral is maximized over s ∈ [0, 2π] when s = π. Putting everything
together, we deduce that, if b ≥ a, then

c(Ωa,b) =
1

2π

∫ π/2

−π/2

2AB cos(t)

1−B2 cos2(t)
dt.

All that remains is to evaluate the integral. Making the substitution x = sin t, and exploiting the
fact that A2 +B2 = 1, we have

1

2π

∫ π/2

−π/2

2AB cos(t)

1−B2 cos2(t)
dt =

1

2π

∫ 1

−1

2AB

1−B2(1− x2)
dx

=
1

π

∫ 1

−1

AB

A2 +B2x2
dx

=
2

π
arctan

(B
A

)
=

2

π
arctan

(1
2

( b
a
− a

b

))
.
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Ωσ Ω

σ′

RΩ(σ′)

Figure 6. A domain Ω with two circles corresponding to values RΩ(σ) and RΩ(σ
′)

This proves the result in the case when b ≥ a. The remaining case is obtained by exchanging the
roles of a and b. □

5.2. Integral estimates. For a general domain, the exact value of c(Ω) is often inaccessible. In
this section, we will present a simple estimate which is applicable to domains Ω with a non-flat
part of the boundary which leads to an upper bound on c(Ω).

Assume that we find a Borel measure ν on ∂Ω such that

kνΩ := sup{∥µζ − ν∥ : ζ ∈ ∂Ω} < 1.

If so, then, for every ϕ ∈ C(∂Ω) with ∥ϕ∥∂Ω ≤ 1, we have∣∣∣KΩϕ(ζ)−
∫
∂Ω

ϕdν
∣∣∣ ≤ kνΩ, ζ ∈ ∂Ω,

which shows that the image of KΩϕ is contained in a disk of radius kνΩ centred at
∫
∂Ω ϕdν. Thus,

cR(Ω) = cC(Ω) = ∥KΩ : C(∂Ω)/C1 → C(∂Ω)/C1∥ ≤ kνΩ.

One approach is to seek a positive measure ν on ∂Ω satisfying µζ ≥ ν for all ζ ∈ ∂Ω. Then

∥µζ − ν∥ = (µζ − ν)(∂Ω) = 1− ν(∂Ω),

and so kνΩ = 1− ν(∂Ω).

We will construct the largest non-negative Borel measure ν on ∂Ω which satisfies µζ − ν ≥ 0.
The construction is based on the geometric interpretation of the density ρζ(σ) and has already
been mentioned in (15). In order to avoid the need to establish Borel measurability of RΩ defined
as a supremum of an uncountable family as in (15), we proceed to define it in a slightly different
but equivalent way. Namely, it is easy to see that, given σ ∈ ∂Ω, if there exists a closed disk ∆
such that Ω ⊂ ∆ and σ ∈ ∂∆, then there exists one of smallest radius. We denote this radius by
RΩ(σ). Note that if σ is not a corner of ∂Ω, then the corresponding disk must be tangent to ∂Ω at
σ. If no disk passing through σ exists which contains Ω, then we set RΩ(σ) := ∞. This happens,
for instance, if σ is contained in the interior of a line segment in ∂Ω. In particular, RΩ(σ) = ∞
for all but a finite number of points of any polygonal domain.

Lemma 21. The function RΩ : ∂Ω → (0,∞] is lower semicontinuous. In particular, it is Borel
measurable.
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Proof. Let σ ∈ ∂Ω and let (σn) be a sequence in ∂Ω such that σn → σ. We need to show that
lim infn→∞RΩ(σn) ≥ RΩ(σ). We can suppose that L := lim infn→∞RΩ(σn) < ∞, otherwise there
is nothing to prove. Let L′ > L. Then, replacing (σn) by a subsequence, we can suppose that
RΩ(σn) < L′ for all n. Thus, for each n, there exists a closed disk ∆n of radius L′ such that
Ω ⊂ ∆n and σn ∈ ∂∆n. The sequence of centres (cn) of the disks ∆n is bounded, so there exists a
convergent subsequence cnj → c. Let ∆ be the closed disk with centre c and radius L′. Then we
have Ω ⊂ ∆ and σ ∈ ∂∆. It follows that RΩ(σ) ≤ L′. As this last inequality holds for all L′ > L,
we deduce that RΩ(σ) ≤ L. This completes the proof. □

We set

(40) dν :=
ds

2πRΩ
.

By the above lemma, ν is a non-negative Borel measure on ∂Ω. For any ζ ∈ ∂Ω, we have

(41) µζ ≥ ν.

To see this, note that if σ is not a corner and Rζ,σ is the radius of the unique circle tangent to ∂Ω
at σ and passing through ζ, then RΩ(σ) ≥ Rζ,σ. Therefore, according to (5),

1

2πRΩ(σ)
≤ 1

2πRζ,σ
= ρζ(σ)

for almost every σ with respect to arclength measure on ∂Ω. Inequality (41) follows. Although we
shall skip a formal proof, we mention also that ν is in fact the largest measure satisfying µζ ≥ ν
for all ζ ∈ ∂Ω. This maximality property of ν is to be interpreted in the following sense: if ν ′ is
any measure satisfying µζ ≥ ν ′ for all ζ, then ν ≥ ν ′.

By our earlier discussion, we obtain the following upper estimate for the configuration constant:

c(Ω) ≤ 1− 1

2π

∫
∂Ω

ds

RΩ
.

Note that this is precisely the assertion of Theorem 4 stated in Section 1.

We will now mention some consequences. Recall that if γ is a plane curve of class C2, then the
radius of curvature of γ is the reciprocal of its curvature.

Corollary 22. If Ω has a C2-boundary of length L, whose radius of curvature is everywhere at
most ρ, then

c(Ω) ≤ 1− L

2πρ
.

Proof. In this case, one sees from (15) and (16) that RΩ(σ) ≤ ρ for all σ ∈ ∂Ω, from which the
result follows. □

This last result was already known. See for example [6, pp.45–46] and [11, pp.128–129]. However
the proofs in these references are quite different from the one above.

Corollary 23. Consider a convex circular sector

Ω = {z ∈ C : 0 ≤ |z| ≤ r, 0 ≤ arg(z) ≤ θ},

where r > 0 and 0 < θ ≤ π. Then

c(Ω) ≤ 1− θ

2π
.
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−1 1

ϵi

−ϵi

θ1

Figure 7. A quadrilateral domain Ωϵ with a(Ωϵ) > 1− (4/π)ϵ.

Proof. It is obvious that RΩ(σ) = r for σ in the curved part of ∂Ω, and that RΩ(σ) = ∞ elsewhere.
Hence

1

2π

∫
∂Ω

ds

RΩ
=

1

2π

rθ

r
=

θ

2π
.

The result now follows from Theorem 4. □

5.3. Analytic configuration constants of quadrilaterals. Theorem 2 shows that a(Ω) < 1
for every Ω. Here we show by example that a(Ω) may be arbitrarily close to 1. Figure 7 shows a
narrow quadrilateral domain for which this phenomenon occurs.

Proposition 24. For ϵ > 0, let Ωϵ be the convex hull of {±1, ±ϵi}. Then

a(Ωϵ) ≥ 1− (4/π)ϵ.

Proof. Let f be a conformal mapping of the interior of Ωϵ onto the unit disk D. By Carathéodory’s
theorem, f extends to a homeomorphism of Ωϵ onto D, and so clearly f ∈ A(Ω). Post-composing
with a suitable automorphism of D, we may further suppose that f(1) = 1 and f(−1) = −1.

Consider ζ = 1. Recalling (3), we have µ1 = (1 − θ1/π)δ1 + (θ1/π)ν, where θ1 is the angle of
the aperture of ∂Ωϵ at 1, and ν is a probability measure on ∂Ωϵ \ {1}. It follows that

Re(KΩϵf)(1) =

∫
∂Ωϵ

(Re f) dµ1

= (1− θ1/π)Re f(1) + (θ1/π)

∫
∂Ωϵ\{1}

(Re f) dν

≥ (1− θ1/π)(1) + (θ1/π)(−1)

= 1− 2θ1/π.

Likewise

Re(KΩϵf)(−1) ≤ −(1− 2θ1/π).

It follows that the diameter of (KΩϵf)(Ω) is at least 2(1− 2θ1/π), whence a(Ω) ≥ (1− 2θ1/π).

Finally, by trigonometry, θ1 is related to ϵ by tan(θ1/2) = ϵ, whence θ1 = 2arctan ϵ ≤ 2ϵ. The
result follows. □
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5.4. Configuration constants equal to zero. Recall the estimate (13) from Section 1, which
will be proved in the next section. The estimate is strongest if a(W ) = 0, and in this case we reach
the conjectured bound K = 2. Unfortunately, the only domain W for which we have a(W ) = 0
is a disk, and in this case (13) reduces to the well-known Okubo-Ando bound from [14]. For
completeness we give a proof of the statement that a(Ω) = 0 if and only if Ω is a disk. More
precisely, we have the following.

Proposition 25. Let Ω be a compact convex domain with non-empty interior. The following are
equivalent:

(i) Ω is a disk,
(ii) c(Ω) = 0,
(iii) a(Ω) = 0.

Proof. In the case that Ω is a disk, then a short computation shows directly that ρζ(σ) in (4) is
a constant independent of ζ, and so for every ζ ∈ ∂Ω, the measure µζ is a normalized arclength
measure on the circular boundary ∂Ω. Then it follows from the definition that KΩf is a constant
function, and consequently ∥KΩf + C1∥C(∂Ω = 0, so c(Ω) = a(Ω) = 0. This shows that the
implications (i) ⇒ (ii) and (ii) ⇒ (iii) hold.

It remains to prove (iii) ⇒ (i). Fix a conformal mapping ϕ : D → Ωo, where D is the open unit
disk and Ωo is the interior of Ω. The mapping ϕ extends to a homeomorphism of ∂D and ∂Ω, and

so it makes sense to define the probability measures µϕ
ζ on ∂D by the equation

µϕ
ζ (E) := µζ(ϕ(E)),

where E is a Borel subset of ∂D, and {µζ}ζ∈∂Ω is the Neumann-Poincaré kernel of Ω. Since
a(Ω) = 0, it follows that for every f ∈ A(Ω) and every pair of points ζ, ζ ′ ∈ ∂Ω we have, by the
change of variables formula, that

0 =

∫
∂Ω

f dµζ −
∫
∂Ω

f dµζ′

=

∫
∂D

f ◦ ϕdµϕ
ζ −

∫
∂D

f ◦ ϕdµϕ
ζ′ .

As f varies over A(Ω), f ◦ ϕ varies over A(D) := A(D), and it follows that µϕ
ζ − µϕ

ζ′ annihilates

A(D). Then the theorem of brothers Riesz (see, for instance, [7, Exercise 1, Chapter III]) implies
that

µϕ
ζ − µϕ

ζ′ = h ds∂D

where h is a function with vanishing positive Fourier coefficients. Note that h is real-valued, so
the negative Fourier coefficients also vanish, and consequently h ≡ 0. Since ζ, ζ ′ were arbitrary,
we conclude that the hypothesis a(Ω) = 0 implies that all the measures µζ are equal.

The conclusion that Ω is a disk is now a consequence of the geometric formula for ρζ(σ) in (4).
For any three different ζ1, ζ2, ζ3 ∈ ∂Ω we have that ρζ1(σ) = ρζ2(σ) = ρζ3(σ) for any σ which is not
a corner of ∂Ω. Then by the geometric interpretation in (4), the unique circle C passing through
ζ1, ζ2, ζ3 is tangent to ∂Ω at σ. Hence ∂Ω ⊂ C, and we conclude that Ω is a disk. □

6. Application to numerical ranges

6.1. Spectral constant estimate. Our principal motivation for the introduction of the analytic
configuration constant is the following result which was mentioned in the Section 1 and which we
will now prove.
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Proposition 26. Let T be a bounded linear operator on a Hilbert space H, and W = W (T ) the
closure of the numerical range of T . If W has non-empty interior, then for every f ∈ A(W ) we
have

∥f(T )∥ ≤
(
1 +

√
1 + a(W )

)
∥f∥W ,

where a(W ) is the analytic configuration constant in (11), and A(W ) is the space of continuous
functions on W which are analytic in the interior of W .

Of course, if W has no interior, then its convexity forces it to be a line segment. In that case
T is a normal operator, and the spectral theorem gives us the better estimate ∥f(T )∥ ≤ ∥f∥σ(T ),
where f may be any Borel measurable function on the spectrum σ(T ). In what follows, we will
assume that W has non-empty interior.

Let us make some initial remarks before going into the proof of Proposition 26. In the case
σ(T ) is contained in the interior of W , then f(T ) is defined, as usual, through the Dunford-
Riesz holomorphic functional calculus. If ∂W ∩ σ(T ) ̸= ∅, then this definition does not work.
Nevertheless, if f ∈ A(W ), then it is a standard result of approximation theory that a sequence
of analytic polynomials (pn) exists which converges to f uniformly on W . In the presence of any
uniform bound of the form ∥p(T )∥ ≤ K∥p(T )∥W for polynomials p, we may then define f(T ) as
the limit of the sequence (pn(T )) in the operator norm. Such bounds are known to exists, the
strongest known bound K ≤ 1+

√
2 being due to Crouzeix and Palencia. Proposition 26 improves

this estimate given information about the numerical range of T .

Our proof of Proposition 26 combines the argument of Crouzeix and Palencia from [4] with ideas
of Schwenninger and de Vries from [17], where bounds for various functional calculi are derived
as a consequence of the existence of extremal functions and extremal vectors. Let U be an open
set in the plane, and H∞(U) be the algebra of holomorphic functions on U . Given an operator
T : H → H with σ(T ) contained in U , it is elementary that the quantity

sup
{
∥f(T )∥ : f ∈ H∞(U), ∥f∥U ≤ 1

}
is finite. A normal-families argument shows that an f ∈ H∞(U) exists with ∥f∥U = 1 for which
the supremum above is attained. Any such f will be called for an extremal function. If, moreover,
a vector x ∈ H with ∥x∥H = 1 exists for which

sup
{
∥f(T )∥ : f ∈ H∞(U), ∥f∥U ≤ 1

}
= ∥f(T )x∥H

then we will say that x is an extremal vector, and (f, x) is an extremal pair. Unless dimH < ∞,
an extremal vector may not exist, but we will be able to reduce the proof to the finite-dimensional
case. The importance of the concept of extremal pairs (f, x) stems from the following result. We
refer the reader to [1, Theorem 4.5] for a proof (see also [17, Proposition 3]).

Lemma 27. Let T : H → H be a bounded linear operator, and U be an open neighbourhood of
σ(T ). Let (f, x) be a corresponding extremal pair. If ∥f(T )∥ > 1, then f(T )x is orthogonal to x
in H:

⟨f(T )x, x⟩H = 0.

The next two lemmas will reduce our task to consideration of finite-dimensional Hilbert spaces,
in which extremal vectors exist, and will dispose of the problematic set σ(T ) ∩ ∂W . The first
observation is essentially contained in [17, Proposition 9].

Lemma 28. If for some K > 0 the estimate

∥p(T )∥ ≤ K∥p∥Ω
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holds for every polynomial p and every operator T on a finite-dimensional Hilbert space, then the
same estimate with the same constant K holds also for operators T on infinite-dimensional Hilbert
spaces.

Proof. Let T : H → H be as above, with dimH = ∞. It suffices to show that

∥p(T )x∥H ≤ K∥p∥Ω∥x∥H
holds for every analytic polynomial p and every x ∈ H. Note that p(T )x is contained in the finite-
dimensional subspace K spanned by {x, Tx, . . . , T dx}, where d is the degree of the polynomial p.
If Π : H → K is the orthogonal projection, then p(T )x = Πp(T )x = p(ΠT )x, where ΠT can be
considered as an operator on the finite-dimensional Hilbert space K. Our hypothesis implies that

∥p(T )x∥H = ∥p(ΠT )x∥K ≤ K∥p∥Ω∥x∥K = K∥p∥Ω∥x∥H.
The lemma follows. □

The proof of the next lemma will use affine invariance of the configuration constants. Let us fix
α, β ∈ C, α ̸= 0, and an affine mapping A(z) := αz+β. Then A is a conformal transformation of C
with the additional property of taking a line segment of length L to a line segment of length |α|L,
and a circle of radius R to a circle of radius |α|R. Let Ω̃ = A(Ω) be the affine image of Ω under A,
and recall the formula for the Neumann-Poincaré kernel in (3) and its geometric interpretation. If

ζ, σ ∈ ∂Ω, E is a Borel subset of ∂Ω, and s, s̃ are the arclength measures on ∂Ω and ∂Ω̃ respectively,
then it follows from the properties of A listed above that

(i) θζ = θA(ζ),
(ii) |α|s(E) = s̃(A(E)),
(iii) |α|Rζ,σ = RA(ζ),A(σ).

A consequence is that the Neumann-Poincaré kernels {µζ}ζ∈∂Ω and {µ̃A(ζ)}A(ζ)∈∂Ω of the respective
domains satisfy

µ̃A(ζ)(A(E)) = µζ(E), E a Borel subset of ∂Ω.

Then a change of variables shows that KΩ(f̃ ◦A) = K
Ω̃
f̃ for any f̃ ∈ C(∂Ω̃), and it follows that

a(Ω) = a(Ω̃), c(Ω) = c(Ω̃).

Armed with these equalities, we make our second observation.

Lemma 29. Assume that the estimate

(42) ∥p(T )∥ ≤
(
1 +

√
1 + a(Ω)

)
∥p∥Ω

holds for every polynomial, every compact convex domain Ω, and every operator T for which W (T )
is contained in the interior of Ω. Then Proposition 26 holds.

Proof. Replacing T by an operator T + βI for some β ∈ C, we may assume that 0 lies in the
interior of W (T ). Let W = W (T ), and

Wr = {rz : z ∈ W}, r > 1.

Then Wr is a convex domain which contains W in its interior. By our assumption, for any analytic
polynomial p we have

∥p(T )∥ ≤
(
1 +

√
1 + a(Wr)

)
∥p∥Wr .

Since Wr is an affine image of W , we have a(Wr) = a(W ). Since this holds for all r > 1, and since
limr→1 ∥p∥Wr = ∥p∥W , we may let r → 1 to obtain the desired estimate whenever p is an analytic
polynomial. The estimate for f ∈ A(W ) follows by density of polynomials in A(W ). □
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Proof of Proposition 26. By Lemma 29, it will be sufficient to establish the estimate (42) whenever
Ω contains W (T ) in its interior Ωo. Moreover, by Lemma 28, we may assume that T is an operator
on a finite-dimensional Hilbert space H. Let U = Ωo and (f, x) be an extremal pair corresponding
to U and the operator T . If ∥f(T )∥ ≤ 1, then (42) certainly holds, so we may assume that
∥f(T )∥ > 1.

Let (fn) be a sequence in A(Ω) such that ∥fn∥Ω ≤ 1 and fn → f locally uniformly in Ω. Then
fn(T ) → f(T ) in operator norm. Set gn := KΩfn. It is shown in [4, Lemmas 2.1 and 2.3] that
gn ∈ A(Ω) and

(43) ∥fn(T ) + gn(T )
∗∥ ≤ 2.

For each n, we may choose λn ∈ C such that

∥gn + λn1∥Ω = inf
λ∈C

∥gn + λ1∥Ω ≤ a(Ω).

We now have the following identity:

⟨fn(T )x, fn(T )x⟩H = ⟨fn(T )x, (fn(T ) + gn(T )
∗)x⟩H(44)

− ⟨fn(T )x, (gn + λn1)(T )
∗x⟩H

+ λn⟨fn(T )x, x⟩H.

Let us consider each of the terms in this identity. By the choice of x, we have

⟨fn(T )x, fn(T )x⟩H = ∥fn(T )x∥2 −→
n→∞

∥f(T )x∥2 = ∥f(T )∥2.

Also, from (43) and the Cauchy–Schwarz inequality,∣∣⟨fn(T )x, (fn(T ) + gn(T )
∗)x⟩H

∣∣ ≤ 2∥fn(T )∥ −→
n→∞

2∥f(T )∥.

By Lemma 27, we have∣∣⟨fn(T )x, (gn + λn1)(T )
∗x⟩
∣∣ = ∣∣⟨(fn(gn + λn1))(T )x, x⟩

∣∣
≤ ∥fn(gn + λn1)∥Ω
≤ ∥gn + λn1∥Ω
≤ a(Ω).

By Lemma 27 again, ⟨f(T )x, x⟩H = 0. Since the sequence (λn) is certainly bounded (indeed
|λn| ≤ 2), we deduce that

λn⟨fn(T )x, x⟩H −→
n→∞

0.

Thus, letting n → ∞ in (44), we deduce that

∥f(T )∥2 ≤ 2∥f(T )∥+ a(Ω).

Hence

∥f(T )∥ ≤ 1 +
√

1 + a(Ω).

In particular, for every polynomial p with ∥p∥Ω = 1 we have

∥p(T )∥ ≤ ∥f(T )∥ ≤ 1 +
√

1 + a(Ω),

since f is extremal. This is equivalent to (42), and so the proof is complete. □
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Appendix A. Double-layer potential on a general convex domain

A.1. Convex domains. Let Ω be a compact convex domain in the plane C with non-empty inte-
rior Ωo. We will be making no assumptions regarding smoothness of the boundary ∂Ω. However,
convexity itself implies that ∂Ω is a rectifiable simple closed curve with some additional properties.

The orientation of ∂Ω is to be counter-clockwise (that is, positive), and we use σ′ ↑ σ and σ′ ↓ σ
to denote, respectively, the counter-clockwise and clockwise one-sided convergence of σ′ to σ within
∂Ω. As a consequence of convexity of Ω, the one-sided tangent angles exist at every point σ ∈ ∂Ω,
are locally given by

α+(σ) := lim
σ′↓σ

arg(σ′ − σ), α−(σ) := lim
σ′↑σ

arg(σ − σ′),

and satisfy
α−(σ) ≤ α+(σ).

Strict inequality may occur at most at a countable subset of ∂Ω. If it occurs at σ, then we say
that ∂Ω has a corner at σ. At any point which is not a corner, the tangent angle

α(σ) := α+(σ) = α−(σ)

is well-defined, and so is the tangent T (σ) := eiα(σ) itself. If t 7→ γ(t) is any (positively-oriented)
parametrization of ∂Ω, and we set α(σ) = α+(σ) at the corners, then the locally defined function
α(γ(t)) is increasing in t, and consequently the tangent T is continuous at every point which is
not a corner of ∂Ω. At a corner, the discontinuity of T amounts to a jump of the argument of T .
We denote by N(σ) := −iT (σ) the outward-pointing normal at σ ∈ ∂Ω.

A.2. Double-layer potential. Let Ωo denote the interior of Ω. To each z ∈ Ωo we associate the
measure µz on ∂Ω, which for any arc J ⊂ ∂Ω satisfies

(45) µz(J) =
1

π

∫
J
d arg(σ − z) =

1

π

(
angle subtended at z by J

)
.

Here arg(σ − z) is any locally defined continuous determination of the argument function on
∂Ω. Non-negativity of µz follows from convexity of Ω and our choice of positive orientation of ∂Ω.
With respect to this orientation, every arc J = (a, b) ⊂ ∂Ω has a start-point a and an end-point b,
and it is easy to see that

µz(J) =
arg(b− z)− arg(a− z)

π
.

In particular, µz(∂Ω) = 2.

The measure µz is absolutely continuous with respect to arclength s on ∂Ω. Indeed, if σ0 ∈ ∂Ω,
Jn = (an, bn) is a sequence of arcs of ∂Ω which are shrinking to σ0, and |Jn| are the corresponding
arclengths, then

πµz(Jn)

|Jn|
=

1

|Jn|

∫
Jn

d arg(σ − z)

=
arg(bn − z)− arg(an − z)

|Jn|

= Im

(
log(bn − z)− log(an − z)

bn − an
· bn − an

|Jn|

)
.

We use above an appropriate locally defined holomorphic branch of the logarithm. As n → ∞, the
first factor inside the brackets satisfies

lim
n→∞

log(bn − z)− log(an − z)

bn − an
=

1

σ0 − z
,
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while the second factor stays bounded as a consequence of the inequality |bn − an| ≤ |Jn|. Thus

lim sup
n→∞

µz(Jn)

|Jn|
< ∞

and from elementary measure theory we obtain that µz is absolutely continuous with respect to s.
If moreover σ0 is not a corner, then it can be shown that

lim
n→∞

|Jn|
|bn − an|

= 1,

and so in additional to boundedness we even have the convergence

lim
n→∞

bn − an
|Jn|

= lim
n→∞

bn − an
|bn − an|

= T (σ0) = iN(σ0).

Thus the Radon-Nikodym derivative satisfies

(46) ρz(σ) :=
dµz

ds
(σ) =

1

π
Im

(
T (σ)

σ − z

)
=

1

π
Re

(
N(σ)

σ − z

)
at every σ ∈ ∂Ω which is not a corner.

A.3. Boundary kernel. The Neumann-Poincaré kernel is the boundary version of the family of
measures {µz}z∈Ωo introduced above. To each point ζ ∈ ∂Ω we associate the Borel probability
measure on ∂Ω defined by (45) for arcs J ⊂ ∂Ω not containing the point ζ. Because ζ ∈ ∂Ω, this
definition implies that µζ(∂Ω \ {ζ}) = θζ/π, where θζ = π − α+(ζ) + α−(ζ) can be interpreted as
the angle of the aperture at ζ. Indeed, θζ is equal to the increase in the argument of σ − ζ as
we traverse one loop around ∂Ω starting and ending at the point ζ, and since µζ is a probability
measure, we must have

µζ({ζ}) = 1−
θζ
π
.

With the exception of this possible point mass, µζ is otherwise absolutely continuous with respect
to arclength. The corresponding Radon-Nikodym derivative is given by

(47) ρζ(σ) :=
dµζ

ds
(σ) =

1

π
Im

(
T (σ)

σ − ζ

)
=

1

π
Re

(
N(σ)

σ − ζ

)
.

The formula (47) is established analogously to (46). All in all, the measure µζ can be decomposed
as

dµζ = (1− θζ/π)dδζ + ρζds,

where δζ is a unit mass at ζ ∈ ∂Ω, θζ is the angle of the aperture at ζ (with the convention that
θζ = π if ζ is not a corner), and where the density ρζ is given by (47).

A.4. Weak-star convergence. We establish now that

lim
z→ζ

µz = δζ + µζ

in the sense of the weak-star topology on measures. Note that if B = B(ζ, δ) is a ball of radius
δ > 0 centred at ζ ∈ ∂Ω, then expressions (46) and (47) for the densities of µz and µζ show that

(48) lim
z→ζ

∫
∂Ω\B

f dµz =

∫
∂Ω\B

f dµζ

for every f ∈ C(∂Ω). In particular, choosing f = 1, we obtain

2 = µζ(∂Ω \B) + lim
z→ζ

µz(B).
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Since

lim
δ→0

µζ(∂Ω \B) = µζ(∂Ω \ {ζ}) = θζ/π

we see that given ϵ > 0 for all sufficiently small δ > 0 we will have

lim sup
z→ζ

|µz(B)− 2 + θζ/π| ≤ ϵ.

Returning to general f ∈ C(∂Ω), we have∫
∂Ω

f dµz −
∫
∂Ω

f d[δζ + µζ ] =

∫
∂Ω\B

f dµz −
∫
∂Ω\B

f dµζ

+

∫
B

(
f − f(ζ)

)
dµz

+ f(ζ)
(
µz(B)− 2 + θζ/π

)
−
∫
B\{ζ}

f dµζ .

On the right-hand side, the first term tends to zero as z → ζ, the second can be made arbitrarily
small by continuity of f , the crude estimate µz(B) ≤ 2 and choice of sufficiently small δ, the third
is dominated in modulus by ∥f∥∂Ω · ϵ for z sufficiently close to ζ, and the fourth is dominated by
∥f∥∂Ω · µζ(B \ {ζ}) which also can be made arbitrarily small by choice of sufficiently small δ. The
desired weak-star convergence follows.
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Email address: ryan.oloughlin.1@ulaval.ca
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