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Abstract. We demonstrate a phenomenon of condensation of the Fourier transform f̂ of a

function f defined on the real line R which decreases rapidly on one half of the line. For
instance, we prove that if f is square-integrable on R, then a one-sided estimate of the form

ρf (x) :=

∫ ∞

x
|f(t)| dt = O

(
e−c

√
x
)
, x > 0

for some c > 0, forces the non-zero frequencies σ(f) := {ζ ∈ R : |f̂(ζ)| > 0} to clump: this

set differs from an open set U only by a set of Lebesgue measure zero, and log |f̂ | is locally

integrable on U . In particular, if f is non-zero, then there exists an interval on which log |f̂ |
is integrable. The roles of f and f̂ above may be interchanged, and the result extends also to
a large class of tempered distributions. We show that the above decay condition is close to

optimal, in the following sense: a non-zero entire function f exists which is square-integrable

on R, for which σ(f) is a subset of a compact set E containing no intervals, and for which the

estimate ρf (x) = O
(
e−xa)

, x > 0, holds for every a ∈ (0, 1/2).

1. Introduction

1.1. Fourier transform, its support and size. This note studies a certain manifestation of the
uncertainty principle in Fourier analysis, where a smallness condition on a function f forces its

Fourier transform f̂ to be, in some sense, large. Vice versa, smallness of f̂ forces f to be large. In
our context, the smallness is defined in terms of a one-sided decay condition, and the largeness in
terms of the existence of a clump. This will be our moniker for an interval on which the function
has an integrable logarithm. We emphasize that our results concern functions with a spectrum
which might vanish on an interval (commonly referred to as functions with a spectral gap), but
for which the spectrum should be large on some other interval.

We will use the following definition of the transform:

(1.1) f̂(ζ) :=

∫
R
f(x)e−ixζ dλ(x), ζ ∈ R.

Here dλ(x) = dx/
√
2π is a normalization of the Lebesgue measure dx on R. Then, the inversion

formula is given by

(1.2) f(x) :=

∫
R
f̂(ζ)eiζx dλ(ζ), x ∈ R.

For p > 0, let Lp(R, dx) be the usual Lebesgue space of functions f for which |f |p is integrable
with respect to dx. The formula (1.1) can be interpreted literally only for f ∈ L1(R, dx). It
is interpreted in terms of Plancherel’s theorem in the case f ∈ L2(R, dx), and in order to state
our most general results we will later need to interpret the transform in the sense of distribution

theory. The spectrum σ(f) of a function f is the subset of R on which f̂ lives. Since f̂ ∈ L2(R, dx)
is defined only up to a set of Lebesgue measure zero, so is the spectrum σ(f) in this case. If we
accept making errors of measure zero (which we will), we may define the spectrum as

σ(f) := {ζ ∈ R : |f̂(ζ)| > 0}, f ∈ L1(R, dx) ∪ L2(R, dx).

Note specifically that our definition of σ(f) might not coincide with the usual notion of closed

support of the distribution f̂ .
1
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The uncertainty principle in Fourier analysis presents itself in plenty of ways, and the excellent
monograph [6] of Havin and Jöricke describes many of its most interesting interpretations. One
of them is the following statement, well-known to function theorists. If f ∈ L2(R, dx) is non-zero
and R− is the negative half-axis, then we have the implication

(1.3) f(x) ≡ 0 on R− ⇒
∫
R

log |f̂(ζ)|
1 + ζ2

dζ > −∞.

Here the extreme decay (indeed, vanishing) of f on a half-axis implies global integrability of log |f̂ |
against the Poisson measure dζ/(1 + ζ2). A fortiori, log |f̂ | is integrable on every interval I of R.
Naturally, this is not typical. By Plancherel’s theorem, every function in L2(R, dx) is the Fourier
transform of some other function in the same space. So on the other extreme, plenty of functions
f ∈ L2(R, dx) have a Fourier transform which lives on sparse sets containing no intervals. This

forces the divergence of the logarithmic integral of f̂ over any interval. In other words, plenty of
functions admit no spectral clumps. The results of this note give conditions under which such
clumps form.

1.2. Condensation and sparseness of spectra and supports. We shall introduce our results
at first in the context of the Hilbert space L2(R, dx). Here we can prove a claim which symmetric in

f and f̂ , and also we can argue for near-optimality of the result. This is the content of Theorem A
and Theorem B. The more general distributional clumping result is presented in Theorem C.

Theorem A. If f ∈ L2(R, dx) satisfies the estimate

(1.4) ρf (x) :=

∫ ∞

x

|f(t)| dt = O
(
e−c

√
x
)
, x > 0

for some constant c > 0, then there exists an open set U which coincides with σ(f) up to a set of
Lebesgue measure zero, and for every x ∈ U there exists an interval I containing x such that∫

I

log |f̂(t)| dt > −∞.

In other words, the one-sided decay condition (1.4) implies that f̂ lives on the union of the
spectral clumps of f . Since the Fourier transform is a unitary operation on L2(R, dx), the roles of
f and f̂ may obviously be interchanged in the statement of Theorem A. Thus a one-sided spectral
decay condition of f implies local integrability properties of log |f | on the set where f lives. In
this form, the result encourages us to extend it to tempered distributions. We shall do so in a
moment.

The integrand in (1.4) may seem a bit unnatural in the context of square-integrable functions
f . It is more natural in the context of functions of tempered growth appearing in Theorem C.
Anyhow, we note that one can prove that an estimate of the form

∫∞
x

|f(t)|2 dt = O
(
e−c

√
x
)
in

fact implies (1.4) for some slightly smaller c.
We can prove also that the condition (1.4) on the decay of ρf appearing in Theorem A is close

to optimal. We do so by exhibiting a non-zero function with rapid one-sided decay but sparse
spectrum.

Theorem B. For every b > 0, there exists a compact set E ⊂ R contained in [0, b] which contains
no intervals, and a non-zero entire function f ∈ L2(R, dx) which satisfies

ρf (x) = O
(
e−xa)

, x > 0

for every a ∈ (0, 1/2), and such that σ(f) is contained within E.

After an initial reduction, the proof of this result follows ideas of Khrushchev from [8]. Note
that the function f appearing in Theorem B is entire by the virtue of having a spectrum σ(f) of
compact support. More importantly, the condition on E implies that I \E has positive Lebesgue
measure for every interval I, so we obtain∫

I

log |f̂(t)| dt = −∞
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for every interval I ⊂ R. This is in contrast to the conclusion of Theorem A. It follows that the
exponent a = 1/2 in estimates of the form ρf (x) = O

(
e−xa)

is critical for the spectral clumping
phenomenon.

As mentioned above, clumping statements makes sense for objects in a class much wider than
L2(R, dx). Here is our distrbutional result.

Theorem C. Let f be a tempered distribution on R which is a measurable function satisfying∫
R

|f(x)|
(1 + |x|)n

dx <∞

for some n > 0. If the distributional Fourier transform f̂ is an integrable function on some interval

[A,∞), and the estimate ρf̂ (ζ) = O
(
e−c

√
ζ
)
holds for all sufficiently large positive ζ, then there

exists an open set U such that f vanishes almost everywhere outside of U , and for each x ∈ U
there exists an interval I containing x satisfying

(1.5)

∫
I

log |f(t)| dt > −∞.

For instance, the result shows that a function f ∈ L1(R, dx) which lives on a sparse set contain-

ing no intervals cannot satisfy even a one-sided spectral decay condition of the form ρf̂ (ζ) ≲ e−c
√
ζ .

Note also that in this extended form, our result includes the trivial but important examples such

as f = 1 and f̂ = δ0 (Dirac delta), the trigonometric functions and the polynomials.

1.3. A converse result. The Beurling-Malliavin theory implies a partial converse result. If f
is a locally integrable function on R which has a clump I as in (1.5), and a constant c > 0
is given, then a bounded multiplier m exists for which mf has a Fourier transform satisfying

ρ
m̂f

(ζ) = O
(
e−c

√
ζ
)
for ζ > 0. To see this, recall that a smooth function g supported in I exists

which satisfies the bilateral spectral decay |ĝ(ζ)| ≤ e−c
√

|ζ|, ζ ∈ R (this simpler version of the
famous Beurling-Malliavin theorem is proved in [6, p. 276-277], and in fact we may ensure an even
faster bilateral spectral decay of g). There exists also a bounded function h ∈ L1(R, dx) which
satisfies σ(h) ⊂ (0,∞) and |h(x)| = min(|f(x)|, 1) on I (we use the assumption that I is a clump
for f and construct h as in (2.7) below). Then an argument similar to the one used in the proof of
Proposition 4.2 below shows that the function hg will satisfy the desired one-sided spectral decay,
and clearly hg = mf for some bounded function m supported in I.

1.4. Clumping in other parts of analysis. The motivation for the research presented in this
note was a desire to produce a self-contained exposition of the clumping phenomenon which was
observed in two other contexts, both somewhat more esoteric than Fourier analysis on the real
line.

The first of these is a polynomial approximation problem in the unit disk D := {z ∈ C : |z| < 1}.
Here we are presented with a measure

dµ = G(1− |z|)dA(z) + w(z)dm(z),

where dA and dm are the area and arc-length measures on D and T := ∂D = {z ∈ C : |z| = 1}.
The functions G and w are non-negative weights, and one would like to understand under which
conditions splitting occurs. Namely, when is the weighted space L2(T, w dm) contained in the
closure of analytic polynomials in the L2-norm induced by the measure µ? In the case that
G(1 − |z|) decays exponentially as |z| → 1−, the necessary and sufficient condition is that w has
no clumps, or in other words that the integral of logw diverges over any arc on T. The lack-of-
clumping condition was conjectured by Kriete and MacCluer in [9] and confirmed in [11]. Some
of the techniques used in the proofs of the results in the present note are adaptations of the ideas
from [11].

The other context is a circle of ideas surrounding the Aleksandrov-Clark measures appearing
in spectral theory, and spaces H(b) defined by de Branges and Rovnyak, well-known to operator
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theorists. To any positive finite Borel measure ν on T we may associate a so-called Clark operator
Cν which takes a function g ∈ L2(T, dν) to the analytic function in D given by the formula

Cνg(z) :=
∫
T

g(x)
1−xzdν(x)∫

T
1

1−xzdν(x)
, z ∈ D.

The operator Cν maps L2(T, dν) onto a space of analytic functions denoted by H(b), the symbol
function b : D → D itself being related to ν by the formula

1

1− b(z)
=

∫
T

1

1− xz
dν(x), z ∈ D

in the case that ν is a probability measure, with a similar formula in the general case. For
many choices of ν (or equivalently, choices of b), the space H(b) is somewhat mysterious, with
the distinctive feature of containing very few functions extending analytically to a disk larger
than D. This extension property is characterized by the exponential decay of the Taylor series of
the function, and the clumping of the absolutely continuous part of ν is decisive for existence and
density of functions inH(b) which have a Taylor series decaying just a bit slower than exponentially.
Results of this nature are contained in [12]. In fact, a Fourier series version of Theorem A is a
consequence of the results in [12].

1.5. Other forms of the uncertainty principle. The implication (1.3) has a well-known
Fourier series version. If a function f defined on the circle T := {z ∈ C : |z| = 1} is integrable
with respect to arc-length ds on T, and the negative portion of the Fourier series of f vanishes,
then

∫
T log |f |ds > −∞, unless f is the zero function.. Volberg derived the same conclusion from

the weaker hypothesis of nearly-exponentially decaying negative portion of the Fourier series (see
[15] and the exposition in [16]). Work of Borichev and Volberg [3] contains related results.

The decay condition (1.4) on f ∈ L2(R, dx) prohibits f̂ from living on a set S containing no
intervals. Somewhat related are uniqueness statements in which one seeks to give examples of
pairs of sets (E,S) for which the following implication is valid: if f in a certain class lives on E

and f̂ lives on S, then f ≡ 0. One says that (E,S) is then a uniqueness pair for the corresponding
class. A famous result of Benedicks presented in [2] (see also [1]) says that (E,S) is a uniqueness
pair for integrable f if both sets have finite Lebesgue measure, and the result holds not only for the
real line R but also for the d-dimensional Euclidean space Rd. Hedenmalm and Montes-Rodŕıguez
worked with the hyperbola H = {(x, y) ∈ R2 : xy = 1} and th class of finite Borel measures µ
supported on H which are absolutely continuous with respect to arclength on H. They proved
in [7] that if µ̂ vanishes on certain types of discrete sets Λ ⊂ R2, then µ ≡ 0, thus exhibiting
interesting uniqueness pairs of the form (H,R2 \Λ). Recent work of Radchenko and Viazovska on
interpolation formulas for Schwartz functions in [13] gives examples of pairs of discrete subsets E
and S of R for which (R\E,R\S) is a uniqueness pair for functions in the Schwartz class. Kulikov,
Nazarov and Sodin exhibit similar interpolation formulas, and consequently new uniqueness pairs,
in their recent work in [10].

1.6. Notation. For a set E ⊂ R and a measure µ defined on R, the space Lp(E, dµ) denotes the
usual Lebesgue space consisting of equivalence classes of functions living only on E and satisfying
the integrability condition

∫
E
|f(x)|pdµ(x) < ∞. The containment Lp(E, dµ) ⊂ Lp(R, dµ) is

interpreted in the natural way. The symbols such as dx, dt and dζ denote the usual Lebesgue
measure of the real line, while dλ = dx/

√
2π will be the normalized version used in formulas

involving Fourier transforms. If E is a subset of R, then |E| denotes its usual Lebesgue measure.
The positive half-axis of R is denoted by R+ := {x ∈ R : x ≥ 0}, and we set also R− := R \ R+.
The notions of almost everywhere and of measure zero are always to be interpreted in the sense of
Lebesgue measure on R. The indicator function of a measurable set E is denoted by 1E . Finally,
we put log+(x) := max(log(x), 0).
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2. Preliminaries

Our proofs will use Hilbert space techniques and the complex method. In particular, we will use
the complex interpretation of the Hardy classes of functions on the line with positive spectrum.
In this section, we recall those basic facts of the theory of the Hardy classes H1(R),H2(R) and
H∞(R) which will be important in the coming sections. We discuss also properties of the shift
operators f(t) 7→ eitsf(t) on weighted spaces on the real line, and their invariant subspaces.

2.1. Hardy classes. For p equal to 1 or 2, we denote by Hp(R) the subspace of Lp(R, dx) con-
sisting of those functions f for which the Fourier transform f̂ vanishes on the negative part of the
real axis:

Hp(R) := {f ∈ Lp(R, dx) : f̂ |R− ≡ 0}.
It is a well-known fact that functions in the Hardy classes H1(R) and H2(R) admit a type of
analytic extension to the upper half-plane

H := {x+ iy ∈ C : y > 0}.

We recall what exactly is meant by this extension and how it can be constructed. The Poisson
kernel of the upper half-plane

P(t, x+ iy) :=
1

π

y

(x− t)2 + y2
, y > 0,

admits a decomposition

(2.1) P(t, z) = Re

(
1

πi(t− z)

)
=

1

2πi

(
1

t− z
− 1

t− z

)
, z = x+ iy ∈ H.

Since

(2.2)
1

t− z
= −i

∫ ∞

0

e−izseits ds

we may use Fubini’s theorem to compute, in the case f ∈ H1(R), that

(2.3)

∫
R

f(t)

t− z
dt = −i

∫ ∞

0

(∫
R
f(t)eits dt

)
e−izsds = 0,

where the vanishing of the integral follows from∫
R
f(t)eits ds = f̂(−s) = 0, s > 0,

which holds for any f ∈ H1(R) by the definition of the class. In the case f ∈ H2(R) this argument
does not work, but what instead works is an application of Plancherel’s theorem and Lemma 4.1
below to the first integral in (2.3), which again shows that this integral vanishes. Consequently,
whenever f ∈ Hp(R) for p = 1, 2, the formula

f(z) :=

∫
R
f(t)P(t, z) dt =

∫
R

f(t)

t− z

dt

2πi
, z ∈ H

defines, by the second integral expression above, an analytic extension of f to H. By the first
expression, and classical properties of the Poisson kernel (see [4, Chapter I]), this extension satisfies

(2.4) lim
y→0+

f(x+ iy) = f(x), for almost every x ∈ R.

Moreover, we have

(2.5) sup
y>0

∫
R
|f(x+ iy)|p dx <∞

and

(2.6) lim
y→0+

∫
R
|f(x+ iy)− f(x)|p dx = 0.
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if f ∈ Hp(R). The property (2.5) follows readily from the Poisson integral formula for the extension
of f and Fubini’s theorem. The property (2.6) is a bit tricky to establish, and is proved in [4,
Chapter I, Theorem 3.1]. In fact, the above listed properties characterize the functions in the
Hardy classes.

Proposition 2.1. For p = 1 and p = 2, a function f ∈ Lp(R, dx) is a member of Hp(R) if and
only if there exists an analytic extension of f to H which satisfies the three properties in (2.4),
(2.5) and (2.6).

The proposition is not hard to derive from Proposition 2.3 below. Anyway, a careful proof can
be found in [6, p. 172].

The following restriction on smallness of the modulus |f | of a function f ∈ H1(R) will be of
crucial importance to us.

Proposition 2.2. If f ∈ H1(R), then∫
R

log |f(x)|
1 + x2

dx > −∞

unless f is the zero function.

A proof of the proposition can be found in [6, p. 35].
We shall also need to use the corresponding Hardy class of functions which are merely bounded

on R, and not necessarily integrable or square-integrable on R. We use directly the complex
interpretation of the class. Namely, we define H∞(R) to consist of those functions f ∈ L∞(R, dx)
which can be realized as limits

lim
y→0+

f(x+ iy) := f(x)

for almost every x ∈ R, where f is bounded and analytic in H. It can be checked that such f has
a distributional spectrum which vanishes on R−. Another important point is that if f ∈ H∞(R),
then

f(x)

(i+ x)2
∈ H1(R),

since we may apply Proposition 2.1 to the analytic function

z 7→ f(z)

(i+ z)2
, z ∈ H.

A function h ∈ H∞(R) of a given (bounded, measurable) modulus |h| = W on R may be con-
structed by setting

(2.7) log h(z) :=
1

πi

∫
R

( 1

t− z
− t

1 + t2

)
logW (t) dt, z ∈ H,

and h(z) := elog h(z). The integral above converges if∫
R

logW (t)

1 + t2
dt > −∞

which is a necessary condition for the construction to be possible. Then

log |h(z)| =
∫

P(t, z) logW (t) dt,

so that the equality limy→0+ |h(x+ iy)| = |h(x)| =W (x) for almost every x ∈ R is a consequence
of the well-known properties of the Poisson kernel.
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2.2. A formula and an estimate for the Fourier transform of a Hardy class function.

If f ∈ H1(R), then the values of f̂(ζ) may be computed using a formula different from (1.1). To
wit, denote by f(z) the extension of f to H which was discussed in Section 2.1. The function

Gζ(z) := f(z)e−izζ = f(z)e−ixζ+yζ , z = x+ iy ∈ H
is analytic in H, and for this reason Cauchy’s integral theorem implies

(2.8)

∫
R(ϵ,y,a)

Gζ(z)dz = 0,

where dz denotes the complex line integral, ϵ, y, a are all positive numbers, ϵ < y, and R(ϵ, y, a)
denotes the rectangular contour having as corners the four points with coordinates (−a, ϵ), (a, ϵ),
(a, y), (−a, y), oriented counter-clockwise.

Fix y > 0 and let Sy denote the horizontal strip in H consisting of all complex numbers with
imaginary part between 0 and y. Then it follows from Fubini’s theorem and (2.5) that∫

S

|Gζ(z)|dA(z) ≤ ey|ζ|
∫
R

∫ y

0

|f(x+ is)|dsdx <∞,

where dA(z) denotes the area measure on the complex plane. This expresses the integrability on
R of the continuous function

x 7→
∫ y

0

|Gζ(x+ is)|ds.

Hence there exists a positive sequence {an}n which satisfies

lim
n→∞

an = +∞

and for which

lim
n→∞

∫ y

0

|Gζ(an + is)|ds+
∫ y

0

|Gζ(−an + is)|ds = 0.

This means that

0 = lim
n→∞

∫
R(ϵ,y,an)

Gζ(z) dz

= −
∫
R
Gζ(x+ iy)dx+

∫
R
Gζ(x+ iϵ)dx

Moreover, equation (2.6) quite easily implies

lim
ϵ→0+

∫
R
Gζ(x+ iϵ)dx =

∫
R
f(x)e−ixζdx =

√
2πf̂(ζ).

We have proven the following formula by combining the above two expressions.

Proposition 2.3. For f ∈ H1(R) we may compute the Fourier transform f̂(ζ) using the formula

f̂(ζ) = eyζ
∫
R
f(x+ iy)e−ixζ dλ(x)

for any choice of y > 0, where f(x+ iy) denotes the values of the analytic extension of f to H.

This formula has the following simple corollary which will be of critical importance below.

Corollary 2.4. If h ∈ H∞(R) has an analytic extension to H which satisfies, for some constant
c > 0, an estimate of the form

sup
x∈R

|h(x+ iy)| ≤ ec/y, for all y > 0,

then the Fourier transform ĥ∗ of the function

h∗(x) :=
h(x)

(i+ x)2
∈ H1(R)

satisfies

|ĥ∗(ζ)| ≤
√
π

2
e2

√
c
√
ζ , ζ > 0.
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Proof. It was mentioned in Section 2.1 that h∗ ∈ H1(R). Therefore, we may use Proposition 2.3
to estimate

|ĥ∗(ζ)| ≤ eyζ
∫
R

|h(x+ iy)|
|i+ x+ iy|2

dλ(x)

≤ eyζ
∫
R

ec/y

1 + x2
dλ(x)

=

√
π

2
eyζ+c/y.

Since y > 0 can be freely chosen, we may now set it to y =
√
c/ζ to obtain the desired estimate. □

2.3. A semigroup of operators and its invariant subspaces. If w ∈ L1(R, dx) and s ∈ R,
the operator Us : L2(R, w dx) → L2(R, w dx) given by

Usf(x) := eisxf(x)

is unitary on L2(R, w dx). We shall be interested in subspaces of L2(R, w dx) which are invariant
for the operators in the semigroup {Us}s>0. Given any element f ∈ L2(R, w dx), we denote by
[f ]w the smallest closed linear subspace of L2(R, w dx) which contains f and also all the functions
Usf , s > 0.

Proposition 2.5. Let f ∈ L2(R, w dx) be a non-zero element which satisfies∫
R

log
(
|f(x)|2w(x)

)
1 + x2

dx = −∞.

Then the subspace [f ]w coincides with L2(E,w dx), where E = {x ∈ R : |f(x)| > 0}.

Remark 2.6. As usual, the set E above is defined in a bit imprecise way. Since f is, strictly
speaking, merely a representative of an equivalence class of measurable functions in L2(R, w dx),
the set E is not well-defined pointwise. However, it is well-defined up to a set of Lebesgue measure
zero, and so the initial choice of the representative is unimportant.

Proof of Proposition 2.5. Since the function f vanishes almost everywhere outside of the set E,
then so does Usf for any s > 0. Consequently, [f ]w ⊂ L2(E,w dx). Conversely, let us consider an
element g ∈ L2(E,w dx) with the property that∫

R
Usf(x)g(x)w(x)dx =

∫
R
eisxf(x)g(x)w(x)dx = 0, s > 0.

Setting h := fgw ∈ L1(R, dx), we note that the vanishing of the integrals above is equivalent to h
being a member of the Hardy class H1(R). We note also that∫

R

log |h(x)|
1 + x2

dx =
1

2

∫
R

log
(
|f(x)|2w(x)

)
1 + x2

dx+
1

2

∫
R

log
(
|g(x)|2w(x)

)
1 + x2

dx.

The above equality is to be interpreted in a generalized sense: the first integral on the right-hand
side is divergent by our assumption, and so may the second, but their positive parts are certainly
finite by the assumption that f, g ∈ L2(R, w dx). This implies that∫

R

log |h(x)|
1 + x2

= −∞.

Proposition 2.2 now shows that h = fgw must be the zero function. Since |f(x)|w(x) > 0 on E
and g vanishes outside of E, this means that g ≡ 0. So [f ]w is a closed and dense subspace of
L2(E,w dx), which means that the two spaces are equal. □

Corollary 2.7. If f ∈ L2(R, w dx) is also a member of Lp(R, w dx) for some p > 2, and if∫
R

logw(x)

1 + x2
dx = −∞,

then [f ]w coincides with L2(E,w dx), where E = {x ∈ R : |f(x)| > 0}.
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Proof. To prove the corollary we need to verify the condition in Proposition 2.5. Note that,
pointwise, we have

log
(
|f |2w

)
= (2/p) log

(
|f |pw

)
+ (1− 2/p) logw.

The coefficients 2/p and 1− 2/p are positive. The inequality log(x) ≤ x for x > 0 shows that∫
R

log
(
|f(x)|pw(x)

)
1 + x2

dx ≤
∫
R
|f(x)|pw(x)dx < +∞.

Note that the integral on the left might very well be equal to −∞, but that is of no concern to
us: we conclude from the assumption, and the pointwise inequality above, that∫

R

log
(
|f(x)|2w(x)

)
1 + x2

dx = −∞

and apply Proposition 2.5. □

3. A product space and its Hardy subspace

Let ρ : R+ → R+ be a bounded, continuous, non-negative and decreasing function, and w ∈
L1(R, dx) ∩ L∞(R, dx) be a non-negative function. We consider the product space L2(R, w dx)⊕
L2(R+, ρ dx). Inside of this space we embed the linear manifold H1(R) ∩ H2(R) in the following
way:

Jf := (f, f̂) ∈ L2(R, w dx)⊕ L2(R+, ρ dx), f ∈ H1(R) ∩H2(R).
The tuple Jf is well-defined as an element of the product space, since both f and f̂ are members
of L2(R, dx) and both ρ and w are bounded. We define the Hardy subspace H(w, ρ) as the norm-
closure of the linear manifold

{Jf : f ∈ H1(R) ∩H2(R)}
inside of the product space L2(R, w dx)⊕ L2(R+, ρ dx). Thus each tuple (h, k) ∈ H(w, ρ) has the
property that there exists some sequence {fn}n of functions in H1(R) ∩H2(R) such that

h = lim
n→∞

fn

in the space L2(R, w dx), and simultaneously

k = lim
n→∞

f̂n

in the space L2(R+, ρ dx).
We could have used a set of tuples Jf with f ∈ H2(R) in the definition of the Hardy subspace,

and arrived at the same space. Indeed, we have the following proposition.

Proposition 3.1. With w and ρ as above, the Hardy subspace H(w, ρ) contains all tuples of the

form (f, f̂), f ∈ H2(R). Moreover, tuples Jf where f ∈ H1(R)∩H2(R) and f extends analytically
to a half-space {z = x+ iy ∈ C : y > −δ}, δ = δ(f) > 0, are norm-dense in H(w, ρ).

Proof. Fix f ∈ H2(R), and consider the functions fϵ(x) defined by the formula

fϵ(x) :=
if(x+ iϵ)

ϵx+ i
, x ∈ R, ϵ > 0.

These functions are contained inH1(R)∩H2(R) for each ϵ > 0, and they are analytic in a half-space
larger than H. Note that ∣∣∣∣∣ i

ϵx+ i

∣∣∣∣∣ ≤ 1, x ∈ R

and that

lim
ϵ→0+

i

ϵx+ i
= 1.

We readily see from Proposition 2.1 and the dominated convergence theorem that we have

lim
ϵ→0+

∫
R
|fϵ − f |2dx = 0.
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By Plancherel’s theorem, we therefore also have

lim
ϵ→0+

∫
R+

|f̂ϵ − f̂ |2dζ = 0.

A fortiori, we have

lim
ϵ→0+

∫
R
|fϵ − f |2w dx = 0

and

lim
ϵ→0+

∫
R+

|f̂ϵ − f̂ |2ρ dζ = 0.

Thus, as ϵ → 0, the tuples Jfϵ ∈ H(w, ρ) converge in the norm of the space to the tuple (f, f̂),
which is therefore contained in H(w, ρ). This proves the first statement of the proposition. The
second has the same proof, we merely start with f ∈ H1(R)∩H2(R) and run the same argument.

□

The shift operators

Usf(x) = eixsf(x), f ∈ L2(R, w dx)

are unitary. Using the convention that g(x) ≡ 0 for x < 0 and g ∈ L2(R+, ρ dx), the translation
operators

Ûsg(x) := g(x− s), g ∈ L2(R+, ρ dx)

are contractions on L2(R+, ρ dx), whenever s > 0. This fact is a consequence of the assumption
that ρ is decreasing:

∫
R+

|g(x− s)|2ρ(x)dx =

∫ ∞

s

|g(x− s)|2ρ(x)dx

≤
∫ ∞

s

|g(x− s)|2ρ(x− s)dx

=

∫
R+

|g(x)|2ρ(x)dx.

We used that g(x− s) vanishes for x ∈ (0, s). Consequently, the operators

Us
∗ := Us ⊕ Ûs, s > 0

are bounded on the space L2(R, w dx) ⊕ L2(R+, ρ dx). Moreover, the Hardy subspace H(w, ρ) is
invariant for these operators. Indeed, if f ∈ H1(R) ∩ H2(R), then by the well-known property of

the Fourier transform Ûsf̂ = Ûsf , we obtain

Us
∗Jf = (Usf, Ûsf̂) = (Usf, Ûsf) = JUsf.

The function Usf is contained in H1(R) ∩ H2(R), and so the above relation shows that a dense
subset of H(w, ρ) is mapped into H(w, ρ) under each of the bounded operators Us

∗ . The mentioned
invariance follows.

4. Strategy of the proofs

This section outlines the strategy of the proofs of Theorem A and Theorem B.
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4.1. Two easy computations. In our strategy, we will need to use the results of the following
two computations.

Lemma 4.1. Let

ψz(x) :=
i√

2π(x− z)
, z ∈ H.

The Fourier transform ψ̂z equals

ψ̂z(ζ) = e−izζ
1R+(ζ),

and the Fourier transform ψ̂z of the conjugate of ψz equals

ψ̂z(ζ) = e−izζ
1R−(ζ).

Proof. It is perhaps easiest to apply the Fourier inversion formula to the asserted formula for ψ̂z.
We readily compute ∫

R
ψ̂z(ζ)e

iζx dλ(ζ) =
1√
2π

∫ ∞

0

e(−iz+ix)ζ dζ

= ψz(x).

The other formula follows from ψ̂z(ζ) = ψ̂z(−ζ), which is an easily established property of the
Fourier transform. □

Proposition 4.2. Assume that f ∈ L2(R, dx) satisfies

ρf̂ (x) =

∫ ∞

x

|f̂(ζ)|dζ = O
(
e−c

√
x
)
, x > 0

for some c > 0, and let

s(x) := ψi(x) =
−i√

2π(x− i)
.

Then ∣∣f̂ s(ζ)∣∣ = O
(
e−c

√
ζ
)
, ζ > 0.

Proof. Note that fs ∈ L1(R, dx), and recall that the Fourier transform f̂ s is thus a continuous
function given by the convolution of the Fourier transforms of f and s. By Lemma 4.1, we obtain

ŝ(ζ) = eζ1R−(ζ),

and so

f̂ s(ζ) =

∫
R
f̂(x)eζ−x

1R−(ζ − x) dλ(x) =

∫ ∞

ζ

f̂(x)eζ−x dλ(x).

The exponential term in the last integral is bounded by 1. Therefore
∣∣f̂ s(ζ)∣∣ ≤ ρf̂ (ζ), and the

desired estimate follows from the decay assumption on ρf̂ . □

4.2. Strategy of the proof of Theorem A. Given a function f ∈ L2(R, dx) we consider the set

E := {x ∈ R : |f(x)| > 0},

which is well-defined up to a set of Lebesgue measure zero. Let F denote the family of all finite
open intervals I which satisfy ∫

I

log |f(x)| dx > −∞,

and set

U := ∪I∈FI.

Since log |f | ≡ −∞ on I \ E for every interval I, it follows that if log |f | is integrable on I, then
the set difference I \ E must have measure zero. Consequently, since one can easily argue that
we can express U as a countable union of intervals I on which log |f | is integrable, the Lebesgue
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measure of the set difference U \ E must be zero. However, the set difference E \ U might have
positive measure. We set

res(f) := E \ U
and call this set the residual of f . The residual is well-defined up to a set of Lebesgue measure
zero.

Claim 1. Under the assumption that ρf̂ (ζ) = O
(
e−c

√
ζ
)
for some c > 0, the set res(f) has

Lebesgue measure zero.

Theorem A follows immediately from the above claim. Indeed, the roles of f and f̂ may
obviously be interchanged in the statement of Theorem A, and the above claim implies that the
open set U equals E up to an error of measure zero. Local integrability of log |f | on the set U
follows from its construction.

We set

w(x) := min(|f(x)|2, 1).
Note that res(w) = res(f) and that w ∈ L1(R, dx). Our Claim 1 will follow from the next assertion.

Claim 2. Let ρ : R+ → R+ be a bounded, continuous, non-negative and decreasing function

which satisfies ρ(x) = O
(
e−d

√
x
)
for some d > 0 and x > 0. Then, every tuple of the form

(h, 0) ∈ L2(R, w dx)⊕ L2(R+, ρ dx),

where h is any function in L2(R, dx) which lives only on the set res(w), is contained in the Hardy
subspace H(w, ρ).

To prove Claim 1 from Claim 2 we will use a trick involving Plancherel’s theorem. We set
ρ(x) = e−c

√
x, where c > 0 is the constant appearing in Claim 1. Let h be as in Claim 2, and

s(x) := ψi(x) =
−i√

2π(x− i)

be as in Proposition 4.2. We will show that∫
R
hfs dx = 0.

This implies, by the generality of h, that fs is zero on the set res(w) = res(f). Since s is non-zero
everywhere on R, in fact f is zero on res(f). Since res(f) ⊂ E = {x ∈ R : |f(x)| > 0}, it follows
that the residual has Lebesgue measure zero. Thus establishing the vanishing of the above integral
is sufficient to prove Claim 1 from Claim 2. We do so next.

Because (h, 0) ∈ H(w, ρ), there exists a sequence {gn} of functions gn ∈ H1(R) ∩ H2(R) such
that gn → h in the norm of L2(R, w dx) and ĝn → 0 in the norm of L2(R+, ρ dx). Consider the
quantities ∫

R
(h− gn)fs dλ =

∫
E

(h− gn)
√
w
fs√
w
dλ.

We passed from domain of integration R into E, since f vanishes outside of E anyway (note also
that w > 0 almost everywhere on E). By the Cauchy-Schwarz inequality, we obtain

∣∣∣∣∣
∫
R
(h− gn)fs dλ

∣∣∣∣∣ ≤
√∫

R
|h− gn|2w dλ

√∫
E

|f |2|
w

|s|2dλ.

Note that the first of the factors on the right-hand side of the inequality above converges to 0.
The other factor is finite. Indeed, since |f |2/w ≡ 1 on the set where |f | < 1, and |f |2/w = |f |2 on

the set where |f | ≥ 1, we obtain |f |2
w ≤ |f |2 + 1, and consequently

|f |2

w
|s|2 ≤ |f |2|s|2 + |s|2 ∈ L1(R, dx).
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This computation implies the formula∫
R
hfs dλ = lim

n→∞

∫
R
gnfs dλ = lim

n→∞

∫
R+

ĝnf̂ s dλ,

where we used Plancherel’s theorem in the last step. Now, recall that by Proposition 4.2 we may
estimate ∣∣∣∣∣

∫
R+

ĝnf̂ s dλ

∣∣∣∣∣ ≤ A

∫
R+

|ĝn(ζ)|e−c
√
ζ dλ(ζ)

for some positive constant A. By again using Cauchy-Schwarz inequality, we obtain∣∣∣∣∣
∫
R
ĝnf̂ s dλ

∣∣∣∣∣ ≤ A

√∫
R+

|ĝn(ζ)|2e−c
√
ζ dλ(ζ)

√∫
R+

e−c
√
ζ dλ(ζ).

The second factor on the right-hand side is certainly finite. Since ρ(x) = e−c
√
x and gn → 0 in

L2(R+, ρ dx), the first factor above converges to 0, as n→ ∞. All in all, we have obtained that∫
R
hfs dλ = lim

n→∞

∫
R+

ĝnf̂ s dλ = 0.

By the earlier discussion, this is sufficient to establish Claim 1 from Claim 2. We need to prove
Claim 2 in order to prove Theorem A. We will do so in the coming sections.

4.3. Strategy of the proof of Theorem B. We will derive Theorem B from the following
claim.

Claim 3. There exists a compact set E ⊂ R of positive Lebesgue measure, and an increasing
function M : R+ → R+ which satisfies

(4.1) lim
x→∞

M(x)

xa
= ∞

for every a ∈ (0, 1/2), such that if

ρ(x) := e−M(x), x > 0,

then the Hardy subspace H(1E , ρ) is properly contained in L2(E,1E dx)⊕ L2(R+, ρ dx).

We proceed to show how one proves Theorem B from this claim. Let E and ρ = e−M be as in
Claim 3, and assume that the non-zero tuple (h, k) ∈ L2(E,1E dx) ⊕ L2(R+, ρ dx) is orthogonal
to H(1E , ρ). We shall soon see that h in fact is non-zero. The function h lives only on the set E,
and we will show that it has the required spectral decay. Recall Lemma 4.1, let ψz ∈ H2(R) be as
in that lemma, and let g be the inverse Fourier transform of kρ, so that ĝ = kρ ∈ L2(R+, dx). In
fact g ∈ H2(R), since its spectrum is positive. The orthogonality means that

0 =

∫
E

hψz dλ+

∫
R+

kψ̂zρ dλ

=

∫
E

hψz dλ+

∫
R
gψz dλ.

We used Plancherel’s theorem. The above relation shows that the function G := h+g ∈ L2(R, dx)
is orthogonal in L2(R, dx) to each of the functions ψz. Let P : L2(R, dx) → H2(R) be the
orthogonal projection. In terms of Fourier transforms, we have

P̂ h(ζ) = ĥ(ζ)1R+
(ζ).

Then

G0 := PG = Ph+ g

is orthogonal not only to ψz, but also to ψz, since by Lemma 4.1 the functions ψz have spectrum
contained in R−. But then the decomposition formula for the Poisson kernel in (2.1) shows that∫

R
G0(t)P(t, z) dt = 0
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for each z ∈ H, and it is an elementary fact about the Poisson kernel that we must, in this case,
have G0 ≡ 0. So Ph = −g. We can now argue that h ̸= 0. Indeed, if h = 0, then g = 0. Since
ĝ = kρ, that would mean k = 0, contradicting that the tuple (h, k) is non-zero. Having established
that h ̸= 0, we proceed by taking Fourier transforms to obtain

ĥ1R+ = P̂ h = −ĝ = −kρ.

Using Cauchy-Schwarz inequality, we may now estimate

ρĥ(x) =

∫ ∞

x

|k|ρ dζ

≤

√∫ ∞

x

ρ dζ

√∫ ∞

x

|k|2ρ dζ, x > 0.

The second factor is finite, and the growth of M asserted in Claim 3 implies that for every fixed
a ∈ (0, 1/2) there exists a constant C(a) > 0 for which we have

ρ(ζ) = e−M(ζ) ≤ e−C(a)ζa

, ζ > 0.

It follows that the integral inside the square root of the first factor above satisfies∫ ∞

x

ρ dζ ≤
∫ ∞

x

e−C(a)ζa

dζ = O
(
e−C(a)xa)

, x > 0.

Since a ∈ (0, 1/2) was arbitrary, we conclude that ρĥ(x) = O
(
e−xa

) for every a ∈ (0, 1/2) and
x > 0. This easily implies Theorem B.

It follows that Theorem B is implied by Claim 3.

5. Proof of Theorem A

Our proof is an adaptation to the half-plane setting of the authors’ technique from [11], and
in fact the two proofs are very similar. The problem studied in [11] is different, but in both
the present work and in the reference, the main trick consists of constructing a highly oscillating
sequence of functions which simultaneously obey appropriate spectral bounds.

5.1. A sufficient construction. We start by reducing our task to a construction of a certain
sequence of bounded functions. Recall that w(x) = min(|f(x)|2, 1) ∈ L1(R, dx) and that ρ has the

decay ρ(ζ) = O
(
e−d

√
ζ
)
for ζ > 0 and some d > 0. Note that we may assume throughout that∫

R

logw(x)

1 + x2
dx = −∞.

Indeed, if on the contrary this integral converges, then res(w) = res(f) is void, and both Claim 2

of Section 4 and Theorem A (with f and f̂ playing opposite roles) hold trivially.
We may decompose res(w) as

res(w) = ∪m≥1 Fm

where

(5.1) Fm := [−m,m] ∩ {x ∈ R : w(x) > 1/m} ∩ res(w).

The set equality above holds up to an error of measure zero. The sets Fm are bounded, and on
each of them w is bounded from below.

Proposition 5.1. In order to establish Claim 2, it suffices to construct, for any fixed m ∈ N and
c > 0, a sequence of functions {hn}n in H∞(R) which has the following properties.

(i) The analytic extensions of the functions hn to H satisfy the bound |hn(x + iy)| ≤ e
c
y for

y > 0,
(ii) limn→∞ hn(x) = 0 for almost every x ∈ Fm,
(iii) limn→∞ hn(z) = 1 for every z ∈ H,
(iv) there exists an A > 0 and p > 2 such that |h(x)|pw(x) < A for almost every x ∈ R.
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Proof. Property (i), together with Corollary 2.4, implies that the functions gn(x) = hn(x)
(i+x)2 ∈

H1(R) ∩ H2(R) obey the spectral bound |ĝn(ζ)| ≤
√

π
2 e

2
√
c
√
ζ , ζ > 0. Since ρ(ζ) = O

(
e−d

√
ζ
)
for

some d > 0, the spectral bound implies that

sup
n

∫
R+

|ĝn|2ρ dζ <∞

if c is small enough. Together with (iv), we see that Jgn = (gn, ĝn) forms a bounded subset of the
Hardy subspace of product space L2(R, w dx) ⊕ L2(R+, ρ dx). We may thus assume, by passing
to a subsequence, that {Jg}n tends weakly in H(w, ρ) to some tuple (h, k). In fact, (iv) implies
that {gn}n is a sequence bounded in Lp(R, w dx), so we have that h ∈ Lp(R, w dx) for some p > 2.
The fact that h ≡ 0 on Fm is a consequence of the weak convergence of gn to h and the condition
(ii), which implies limn→∞ gn(x) = 0 for almost every x ∈ Fm. Moreover, by the formula in
Proposition 2.3, we have

ĝn(ζ) = eyζ
∫
R

hn(x+ iy)

(i+ x+ iy)2
e−ixζdλ(x)

for any y > 0. The integrand converges pointwise to e−ixζ

(i+x+iy)2 by (iii), and it is dominated

pointwise by the integrable function

x 7→ e
c
y

1 + x2
, x ∈ R.

The dominated convergence theorem implies that

lim
n→∞

ĝn(ζ) = eyζ
∫
R

1

i+ x+ iy
e−ixζ dλ(x) =

∫
R

1

(i+ x)2
e−ixζ dλ(x) = Ψ̂(ζ),

where Ψ(x) := 1
(i+x)2 ∈ H1(R) ∩ H2(R). In the next-to-last equality we used Proposition 2.3

backwards. Weak and pointwise convergence implies, as previously, that k = Ψ̂. Since JΨ ∈
H(w, ρ), we have that (h, k)− JΨ = (h−Ψ, 0) ∈ H(w, ρ). The function h−Ψ is non-zero almost
everywhere on Fm. Indeed, h vanishes on Fm, and Ψ(x) is non-zero everywhere on Fm. Also,
since h ∈ Lp(R, w dx), we have h − Ψ ∈ Lp(R, w dx). The conditions to apply Corollary 2.7 are
thus satisfied, and by the invariance of H(w, ρ) under the operators U∗

s defined in Section 3, we
conclude that

L2(E,w dx)⊕ {0} ⊂ H(w, ρ),

where Fm ⊂ E := {x ∈ R : |h(x)−Ψ(x)| > 0}. Since m is arbitrary, we conclude that

L2(∪mFm, w dx)⊕ {0} = L2(res(w), w dx)⊕ {0} ⊂ H(w, ρ).

This is sufficient to conclude the validity of Claim 2. □

5.2. An estimate for Poisson integrals. Let µ be a finite real-valued measure on R. The
Poisson integral of µ is the harmonic function Pµ : H → R which is given by the formula

Pµ(z) :=

∫
R
P(t, z) dµ(t) =

1

π

∫
R

y

(x− t)2 + y2
dµ(t), z = x+ iy ∈ H.

By the triangle inequality, and an estimation of P(t, z) by its supremum 1
πy over R, we easily

obtain the inequality ∣∣Pµ(z)
∣∣ ≤ |µ|(R)

πy
, z = x+ iy ∈ H,

and where |µ| denotes the usual variation of the measure µ. We obtain a much better inequality
for measures µ which are oscillating rapidly. The following lemma is the half-plane version of an
estimate in [11, Lemma 3.2].

Lemma 5.2. Let µ be a finite real-valued measure on R which has the following structure: there
exists a finite sequence of disjoint intervals {Ij}j of R, and a decomposition µ =

∑
j µj, where µj
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is a real-valued measure supported inside Ij, µj(Ij) = 0, and |µj |(Ij) ≤ C for some C > 0 which
is independent of j. Then ∣∣Pµ(x+ iy)

∣∣ ≤ C

πy
, x+ iy ∈ H.

Proof. Since −µ satisfies the same conditions as µ, and so does any translation of µ, it suffices to
prove that Pµ(y) ≤ C

πy for any y > 0. We have

Pµ(y) =
∑
j

1

π

∫
R

y

t2 + y2
dµj(t).

If µj = µ+
j − µ−

j is the decomposition of µj into its positive and negative parts, then we have the
estimate

Pµ(y) ≤
1

π

∑
j

sup
t∈Ij

y

t2 + y2
· µ+

j (Ij)− inf
t∈Ij

y

t2 + y2
· µ−

j (Ij)

≤ C

2π

∑
j

sup
t∈Ij

y

t2 + y2
− inf

t∈Ij

y

t2 + y2

:=
C

2π
S

In the second step we used that µj(Ij) = µ+
j (Ij) − µ−

j (Ij) = 0 and that |µj |(Ij) = µ+
j (Ij) +

µ−
j (Ij) ≤ C. Since the intervals {Ij}j are disjoint, and the function t 7→ y

t2+y2 is increasing for

t < 0, decreasing for t > 0, and attains a maximum value of 1/y at t = 0, the sum S in the above
estimate cannot be larger than 2

y (it is easily seen to be bounded by twice the height of the graph

of t 7→ y
t2+y2 ). The estimate follows. □

5.3. The construction. In accordance with the earlier discussion in Section 5.1, we recall the
decomposition (5.1) and assume below that F := Fm is a bounded subset of res(w) ∩ {x ∈ R :
w(x) > δ} for some δ > 0. The set F inherits the following property from res(w): if I is an
interval, and |I ∩ F | > 0, then

∫
I
logw dx = −∞.

Lemma 5.3. If |I ∩ F | > 0 for some finite interval I, then given any c > 0 and any p > 0, there
exists D > 0 and a measurable subset EI ⊂ I disjoint from F for which we have

(5.2)

∫
EI

min
(
p−1 log+(1/w), D

)
dx = c.

Proof. On the set F , log(w) is bounded from below by log δ. Hence
∫
I\F logw dx = −∞. Conse-

quently,

lim
D→+∞

∫
I\F

min
(
p−1 log+(1/w), D

)
dx =

∫
I\F

p−1 log+(1/w) dx = +∞.

So for D sufficiently large we will have
∫
I\F min

(
p−1 log+(1/w), D

)
dx > c, and then by the

absolute continuity of the finite positive measure min
(
p−1 log+(1/w), D

)
dx we may choose a set

EI ⊂ I \ F for which (5.2) holds. □

We will now construct the sequence in Proposition 5.1. Let p > 2, {cn}n≥1 be some sequence
of positive numbers which tends to 0 slowly enough so that cn2

n tends to +∞, and let F be as
above. Fix some integer n > 0, cover R by a sequence of (say, half-open) disjoint intervals of
length 2−n and let {ℓk}k be those intervals for which |ℓk ∩ F | > 0. Apply Lemma 5.3 with c = cn
to each of the intervals ℓk to obtain a corresponding constant Dk > 0 and a set Ek := Eℓk ⊂ ℓk
for which (5.2) holds. We set dµ(t) = logW (t) dt, where

logW (t) =
∑
k

min
(
p−1 log+(1/w(t)), Dk

)
1Ek

(t)− cn
|ℓk ∩ F |

1ℓk∩F (t).

Then µ is an absolutely continuous real-valued measure with bounded density logW , µ(ℓk) = 0
and |µ|(ℓk) = 2cn. We construct hn ∈ H∞(R) by letting the logarithm log hn(z) of its extension
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to H be given by the right-hand side of the formula (2.7). Then, by Lemma 5.2, we have the
inequalities

|Pµ(x+ iy)| ≤ 2cn
πy

, z = x+ iy ∈ H

and consequently, since |h(z)| = ePµ(z), we have the bounds

(5.3) e−2cn/πy ≤ |hn(z)| ≤ e2cn/πy, z = x+ iy ∈ H.

Since cn → 0, by multiplying hn by an appropriate unimodular constant, we may assume by (5.3)
that

(5.4) lim
n→∞

hn(z) = 1

for every z ∈ H (possibly after passing to a subsequence). Also, for almost every x ∈ F , we have

(5.5) |hn(x)| = e−cn/|ℓk∩F | ≤ e−cn2
n

.

Our assumption on cn then implies that limn→∞ hn(x) = 0 for almost every x ∈ F . For almost
every x ∈ R \ F , we have instead

(5.6) |hn(x)|pw(x) = ep logW (x)w(x) ≤ elog
+(1/w(x))w(x) ≤ 1.

The equations (5.3), (5.4), (5.5) and (5.6) show that the sequence {hn}n satisfies the conditions
stated in Proposition 5.1. Thus Claim 2 holds, and consequently the proof of Theorem A is
complete.

6. Proof of Theorem B

6.1. A bit of concave analysis. LetM : R+ → R+ be an increasing and concave function which
is differentiable for x > 0. We assume that M(0) = 0, and that

(6.1) M(x) ≤
√
x, x > 0.

For a function M with the above properties, the integrals

(6.2) IM (y) :=

∫ ∞

0

eM(x)−2yx dx

converge for every y > 0, and estimation of the growth of IM (y) as y → 0+ will be of importance
in the proof of Theorem B. To estimate IM , we define a function M∗ in the following way. Since
M is increasing, concave and differentiable, the derivative M ′(x) is defined for x > 0, and it is a
positive and decreasing function. The concavity of M implies that

(6.3) M ′(x) ≤M(x)/x

from which it follows by (6.1) that

lim
x→∞

M ′(x) = 0.

It is only the asymptotic behaviour of M as x → ∞ that concerns us, so we will also assume for
convenience that limx→0+ M

′(x) = +∞. In this case, the inverse function

(6.4) K(y) := (M ′)−1(y), y ∈ (0,∞)

is well-defined and positive. It is decreasing, and satisfies limy→0+ K(y) = +∞. We set

(6.5) M∗(y) :=M(K(y)), y ∈ (0,∞)

The function M∗ is decreasing, and satisfies limy→0+ M∗(y) = +∞. The integrals IM (y) can be
estimated in terms of M∗.

Proposition 6.1. For M as above, we have

IM (y) ≤ 2eM∗(y)

y2

for all sufficiently small y > 0.
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Proof. We will need the following observation. The inequality (6.3) together with (6.1) implies
that M ′(x) ≤ 1√

x
if x > 0 is sufficiently large. We want to show the inequality

K(y) ≤ 1

y2
,

for sufficiently small y > 0. Set K(y) = x and 1
y2 = x∗. Then

M ′(x) = y =
1

√
x∗

≥M ′(x∗)

if y > 0 is sufficiently small (and consequently x∗ is sufficiently large). Since M ′ is a decreasing
function, the above inequality shows that x∗ ≥ x, which is the same as the desired inequality.

We split the integral (6.2) at x = K(y). Both pieces can be estimated very crudely. For the
first piece, we have ∫ K(y)

0

eM(x)−2yx dx ≤
∫ K(y)

0

eM(K(y)) dx

= K(y)eM∗(y)

≤ eM∗(y)

y2
.

We used our initial observation in the last step. For the second piece, we note that

sup
x>0

M(x)− yx =M(K(y))− yK(y) ≤M∗(y).

Indeed, the supremum is attained at the point x whereM ′(x) = y, which by definition is x = K(y).
Thus ∫ ∞

K(y)

eM(x)−2yx dx ≤
∫ ∞

K(y)

eM∗(y)−xy dx

≤eM∗(y)

∫ ∞

0

e−yx dx

=
eM∗(y)

y

≤e
M∗(y)

y2
.

In the last inequality we require that y ∈ (0, 1). We obtain the desired estimate by combining the
estimates for the two pieces of the integral. □

In the proof of Theorem B, a point will come up where we will need integrability ofM∗ near the
origin. The next proposition describes the functions M corresponding to M∗ which are integrable
in this way.

Proposition 6.2. For M as above, the following two statements are equivalent.

(i)
∫ δ

0
M∗(y) dy <∞ for some δ > 0.

(ii)
∫∞
1

(M ′(x))2 dx <∞.

Proof. We start with the integral in (i) above and implement the change of variable y = M ′(x).
Then dy =M ′′(x) dx and M∗(y) =M(x), and by next using integration by parts, we obtain∫ δ

0

M∗(y) dy = −
∫ ∞

K(δ)

M(x)M ′′(x) dx

= lim
R→+∞

−M(R)M ′(R) +M(K(δ))M ′(K(δ))

+ lim
R→+∞

∫ R

K(δ)

(M ′(x))2 dx.
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The assumptions (6.1) and (6.3) together imply that the quantity M ′(R)M(R) stays bounded, as
R→ +∞. Thus the desired equivalence follows from the above computation. □

Remark 6.3. We should point out that a concave function indeed exists which satisfies all of our
conditions. For instance, note that any concave function M which for large positive x coincides
with

M(x) :=

√
x

log x

satisfies the equivalent conditions of the above proposition. Indeed, one verifies by differentiation
that the right-hand side is concave on some interval [A,∞) and that the integral in (ii) of Propo-
sition 6.2 converges. Such a function M can be easily chosen to satisfy all assumptions made in
this section. Moreover, clearly it satisfies (4.1).

6.2. A growth estimate for Hardy class functions.

Proposition 6.4. Let f ∈ H1(R) ∩H2(R) have a Fourier transform f̂ satisfying∫
R+

|f̂ |2ρ dζ ≤ C

for some constant C > 0 and ρ(ζ) = e−M(ζ). Then there exist a positive constant δ such that the
analytic extension of f to H satisfies the estimate

|f(x+ iy)| ≤
√
2C

eM∗(y)

y
, y ∈ (0, δ).

Proof. By developments of Section 2.1, we have

f(z) =

∫
R

f(t)

t− z

dt

2πi
=

∫
R
f(t)ψz(t)dλ(t), z = x+ iy ∈ H,

and where ψz ∈ H2(R) is as in Lemma 4.1. By Plancherel’s theorem and the lemma, we obtain

f(z) =

∫
R+

f̂(ζ)eizζ dλ(ζ)

=

∫
R+

f̂(ζ)
√
ρ(ζ)

e−yζ+ixζ√
ρ(ζ)

dλ(ζ)

An application of Cauchy-Schwarz inequality leads to

(6.6) |f(z)| ≤
√
C

√∫ ∞

0

eM(ζ)−2yζ dζ.

Now Proposition 6.1 applies to obtain the desired estimate. □

6.3. Construction of the compact set. If M satisfies the equivalent conditions of Proposi-
tion 6.2, then the logarithm of the right-hand side in the inequality of Proposition 6.4, namely

(6.7) H(y) :=
log(2C)

2
+M∗(y)− log y, y ∈ (0, δ),

is, for small enough δ > 0, positive and integrable over the interval y ∈ (0, δ). To H and any A > 0
we will associate a Cantor-type compact set E contained in [0, A] which contains no intervals and
for which the integral

(6.8)

∫
[0,A]\E

H(dist(x,E)) dx

converges. Here dist(x,E) denotes the distance from the point x ∈ [0, A] to the closed set E.
Let U = {ℓ} be the system of maximal disjoint open intervals, union of which constitutes the
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complement of E within (0, A). The convergence of the integral above is easily seen to be equivalent
to the convergence of the sum

(6.9)
∑
ℓ∈U

∫ |ℓ|

0

H(x) dx

where |ℓ| denotes the length of the interval ℓ. To construct E, we choose a sequence of numbers
{Ln}n≥1 which is so quickly decreasing that

(6.10)

∞∑
n=1

2n
∫ Ln

0

H(x) dx <∞

and

(6.11)

∞∑
n=1

2nLn ≤ A/2.

From such a sequence, we construct E as in the classical Cantor set construction. We set E0 =
[0, A], and recursively define a compact set En+1 contained in En. The set En+1 consists of
2n+1 closed intervals in [0, A] which we obtain by removing from the 2n closed intervals {En,i}2

n

i=1

constituting En an open interval of length Ln lying in the middle of En,i. Thus splitting each En,i

into two new closed intervals. The above summation condition (6.11) ensures that |En| > A/2,
and so E := ∩∞

n=0En has positive Lebesgue measure which is not less than A/2. The integral
condition (6.8) holds by its equivalence to (6.9) and by (6.10). Clearly E contains no intervals.

6.4. Collapse of the Fourier transforms. We are now ready to prove Claim 3. We will do so
by showing that H(1E , ρ) does not contain any non-zero tuple of the form (0, k), k ∈ L2(R+, ρ dx),
where M is as in Remark 6.3, for instance, and where E is as in Section 6.3. We set ρ = e−M .

Lemma 6.5. Let E, Mand ρ be chosen as above. Assume that {fn}n is a sequence of functions
in H1(R) ∩ H2(R), each of which has an analytic extension to a half-space larger than H. If

limn→∞ fn = 0 in the norm of L2(E,1E dx) and the sequence of Fourier transforms {f̂n}n satisfies

sup
n

∫
R+

|f̂n|2ρ dζ <∞,

then we have

lim
n→∞

fn(z) = 0, z ∈ H.

The convergence is uniform on compact subsets of H.

In the proof of Lemma 6.5 given below we will use a technique of Khrushchev from [8] for
estimating harmonic measures on certain domains. For general background on the theory of
harmonic measures, see [5] or [14].

Let U = {ℓ} be the collection of finite open intervals complementary to E, and let

Tℓ := {x+ iy ∈ H : x ∈ ℓ, y ≤ dist(x,E)}

be a triangle with base at ℓ. We define Ω = R \
(
∪ℓ∈U Tℓ

)
to be the bounded domain in H which

consists of a rectangle R, with a base being the shortest closed interval containing the set E, with
the triangles Tℓ removed from R. See Figure 1. An observation that Khrushchev made regarding
this type of domains is the following property of their harmonic measure.

Lemma 6.6. Let E, M and ρ be chosen as above, and let H be given by (6.7). Let Ω be the
domain described above. If ωz is the harmonic measure of the domain Ω at any point z ∈ Ω, then∫

∂Ω∩H
H(Im t) dωz(t) <∞.

We emphasize that ∂Ω ∩H equals ∂Ω \ R.
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R

HΩ

Figure 1. The domain Ω in the proof of Lemma 6.5. There is a triangular tent
between Ω and each complementary interval of E, and E lives on R inbetween
the tents.

Proof. The proof is very similar to the one given by Khrushchev in [8], only minor details differ.
If ℓ = (a, b) is one of the finite intervals complementary to E, and Tℓ is the triangle standing on
top of it, then we denote by A(s) the part of the boundary of Tℓ which lies above the interval
(a, a+ s) ⊂ R, 0 < s < |ℓ|/2. If u is the harmonic measure in H of the interval (a, a+ s), then it
is easy to see from the explicit formula

u(x+ iy) =
1

π

∫ a+s

a

y

(x− t)2 + y2
dt, x+ iy ∈ H

that u(x + iy) ≥ 1
2π for x + iy ∈ A(s). Since u is harmonic and continuous in the closure of Ω

except possibly at the two points a and a + s, the reproducing formula
∫
∂Ω
u dωz = u(z) holds,

and so

ωz(A(s)) =

∫
A(s)

dωz ≤
∫
∂Ω

2πu dωz = 2πu(z) ≤ 2s

y
, z = x+ iy ∈ H.

We have used the positivity of u and ωz in the first inequality, and the second one is an easy
consequence of the explicit formula for u above. Set A1 := A(|ℓ|/2), which is the left side of the
boundary of Tℓ, and further set An := A(|ℓ|/2n), n ≥ 1. Then, since H is decreasing,∫

∂Tℓ∩H
H(Im t)dωz(t) = 2

∫
A1

H(Im t) dωz(t)

≤ 2

∞∑
n=1

∫
An−An+1

H(|ℓ|/2n+1) dωz(t)

≤ 2

∞∑
n=1

H(|ℓ|/2n+1)
2|ℓ|
2ny

≤ 16

y

∫ |ℓ|

0

H(t) dt.

Now the desired claim follows from (6.9). □

Proof of Lemma 6.5 . Note that it is sufficient to establish the claim that the sequence {fn}n
contains a subsequence which converges pointwise in Ω to 0. Indeed, the proof of Proposition 6.4

shows that our assumption on the Fourier transforms f̂ implies pointwise boundedness of the
sequence {fn}n on each half-plane {x+ iy ∈ H : y > δ}, δ > 0. Hence the sequence {fn}n forms a
normal family on H. If we establish the above claim, then every subsequences of {fn}n contains
a further subsequence convergent to 0 in H. This is equivalent to convergence of the entire initial
sequence {fn}n to 0.

Fix z ∈ Ω. Since log |fn| is a subharmonic function and max(−N, log |fn|) is a bounded contin-
uous function on ∂Ω, we obtain by the maximum principle for subharmonic functions that

log |fn(z)| ≤
∫
∂Ω

max(−N, log |fn(t)|) dωz(t).
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We let N → +∞ and, by the monotone convergence theorem, obtain

log |fn(z)| ≤
∫
∂Ω

log |fn(t)| dωz(t)

=

∫
∂Ω∩H

log |fn(t)| dωz(t) +

∫
E

log |fn(t)| dωz(t)

The assumption in the lemma, Proposition 6.4, the definition of H in (6.7) and Lemma 6.6 show
that ∫

∂Ω∩H
log |fn(t)| dωz(t) ≤

∫
∂Ω∩H

H(Im t)dωz(t) < A

where A is some positive constant which is independent of n. By Egorov’s theorem, we may pass
to a subsequence (the same subsequence for each z ∈ Ω) and assume that fn converge uniformly to
0 on some subset E′ of E which is of positive Lebesgue measure. On E \E′ we have the estimate∫

E\E′
log |fn(t)| dωz(t) ≤

∫
E\E′

|fn(t)|2 dωz(t) ≤
1

π Im z

∫
E\E′

|fn(t)|2 dx.

The last inequality follows from monotonicity of the harmonic measure with respect to domains
(see [14, Corollary 4.3.9]), which applied to Ω ⊂ H leads to the inequality

ωz(B) ≤
∫
B

P(t, z) dt ≤ |B|
π Im z

for any Borel subset B of E. Thus dωz ≤ dx
π Im z , attesting the integral inequality above. By

the convergence of fn to 0 in the norm of L2(E,1E dx), the integrals
∫
E\E′ |fn|2dx are uniformly

bounded by some constant C > 0, and so the above inequalities give

log |fn(z)| ≤ A+ C +

∫
E′

log |fn(t)|dωz(t).

But ωz(E
′) > 0, since the harmonic measure and the arc-length measure on the rectifiable curve

∂Ω are mutualy absolutely continuous (see [5, Theorem 1.2 of Chapter VI]), so since |fn| converge
uniformly to 0 on E′, the integral on the right-hand side above converges to −∞ as n→ ∞. Thus
|fn(z)| → 0, and since z ∈ Ω was arbitrary, the desired claim follows. □

The following proposition implies Claim 3 of Section 4, and so it also implies Theorem B.

Proposition 6.7. Let E,Mand ρ be chosen as above. If a tuple of the form (0, k) ∈ L2(E,1E dx)⊕
L2(R+, ρ) is contained in the Hardy subspace H(1E , ρ), then k ≡ 0.

Proof. By the containment (0, k) ∈ H(1E , ρ) and Proposition 3.1, there exists a sequence {fn}n of

functions inH1(R)∩H2(R) extending analytically across R and for which the tuples Jfn = (fn, f̂n)
converge in the norm of the product space L2(R,1E dx)⊕L2(R+, ρ dx) to (0, k). By passing to a

subsequence, we may assume that the Fourier transforms f̂n converge pointwise almost everywhere
on R+ to k. One might attempt to prove the proposition by using the formula in Proposition 2.3,
and observing that

k(ζ) = lim
n→∞

f̂n(ζ) = lim
n→∞

eyζ
∫
R
fn(x+ iy)e−ixζ dλ(x)

holds for almost every ζ ∈ R+ and for any y > 0. By Lemma 6.5 the integrand converges pointwise
to 0. However, an appeal to the usual convergence theorems for integrals is not justified, and we
have to proceed more carefully. Note that since k ∈ L2(R+, ρ dx) and ρ is bounded from below on
compact subsets of R+, in fact k is locally integrable on R. It follows that we can interpret k as a
distribution on R+. Thus to show that k ≡ 0, it suffices to establish that

∫
R+
kϕ dλ = 0 for every

smooth function ϕ which is compactly supported in R+.

Let ϕ be as above. Since we have that f̂n → k in L2(R+, ρ dx) and ρ is bounded from below on
compact subsets of R+, we obtain

(6.12)

∫
R+

kϕ dλ = lim
n→∞

∫
R+

f̂nϕdλ.
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Fix some small y > 0. By Proposition 2.3, we get that

f̂n(ζ) = eyζ
∫
R
fn(x+ iy)e−ixζ dλ(x).

Plugging this formula into (6.12) and noting that the use of Fubini’s theorem is permitted, we
obtain ∫

R+

kϕ dλ = lim
n→∞

∫
R

(∫
R+

ϕ(ζ)eyζe−ixζdλ(ζ)
)
fn(x+ iy) dλ(x)

= lim
n→∞

∫
R
D(x)fn(x+ iy) dλ(x)(6.13)

where

D(x) :=

∫
R+

ϕ(ζ)eyζe−ixζdλ(ζ)

is the Fourier transform of the compactly supported smooth function ζ 7→ ϕ(ζ)eyζ . As such, D is
certainly integrable on R. By Lemma 6.5, we have limn→∞ fn(x+ iy) = 0, and

sup
n

sup
x∈R

|fn(x+ iy)| <∞

holds by Proposition 6.4. Therefore, this time, the dominated convergence theorem applies to
(6.13), and we conclude that ∫

R+

kϕ dλ = 0.

Thus k is the zero distribution on R+, and therefore k ≡ 0. □

7. Clumping for tempered distributions

In this last section, we indicate how one can derive Theorem C from Theorem A. We will skip
most of the details of the necessary computations, which are in any case standard.

Let f be a function which satisfies

(7.1)

∫
R

|f(x)|
(1 + |x|)n

dx <∞

for some positive integer n. Then f can be interpreted as a tempered distribution on R in the

usual way, and so f has a distributional Fourier transform f̂ . Our hypothesis is that f̂ is an
integrable function on some half-axis [ζ0,∞) and that

(7.2) ρf̂ (ζ) = O
(
e−c

√
ζ
)
, ζ > ζ0.

We may assume that ζ0 = 0. In order to prove Theorem C, we will construct an appropriate
multiplier m : R → C with the property that mf is a function to which Theorem A applies. In
particular, the following properties will be satisfied by m:

(i) m(x) is a bounded function of x ∈ R which is non-zero for almost every x ∈ R.
(ii) mf ∈ L2(R, dx),
(iii) ρ

m̂f
(ζ) = O

(
e−c

√
ζ
)
for some c > 0 and ζ > 0,

(iv)
∫
I
log |m| dx > −∞ for every interval I ⊂ R.

If we construct such a multiplier m, then (ii), (iii) and Theorem A imply that log |mf | is
locally integrable on an open set U which coincides, up to a set of measure zero, with {x ∈ R :
|f(x)m(x)| > 0}. By (i), U differs from {x ∈ R : |f(x)| > 0} at most by a set of measure zero.
Moreover, the formula log |f | = log |fm| − log |m| and (iv) show that log |f | is locally integrable
on U . This proves Theorem C, as a consequence of existence of a multiplier satisfying the above
conditions. We now show how to construct such a multiplier.

We set

Φ(x) :=
(−i)nn!√
2π(x− i)n
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and let h be defined by the equation (2.7), with

log |h(x)| = logmin(1, |f(x)|−1), x ∈ R.

The condition (7.1) ensures that h is well-defined, and it is a member of H∞(R). We put

h∗(x) :=
h(x)

(x+ i)2
, x ∈ R.

and finally

m(x) := Φ(x)h∗(x), x ∈ R.
Clearly, m is bounded. Since |f | is locally integrable on R, the set {x ∈ R : |f | = ∞} has
measure zero. Consequently, |h∗| > 0 almost everywhere in R, and so the desired property (i)
of m holds. The choice of h∗ and Φ ensures that mf is both bounded and integrable on R,
implying mf ∈ L2(R, dx), so that (ii) above holds. Property (iv) holds by Proposition 2.2, since
h∗ ∈ H1(R). So the critical property left to be verified is the spectral estimate of mf in (iii)
above.

Lemma 7.1. With notation and definitions as above, the Fourier transform m̂f satisfies

ρ
m̂f

(ζ) = O
(
e−c

√
ζ
)
, ζ > 0

for some c > 0.

Proof. A standard argument shows that f̂Φ must coincide on R+ with the convolution f̂ ∗ Φ̂
(which, note, is a function on R+). Indeed, let s be a Schwartz function which has a Fourier
transform ŝ supported on some compact interval [a, b], 0 < a < b. Note that the function Φs is
also of Schwartz class. It follows immediately from the integral definition of the Fourier transform

(1.1) that Φ̂s = Φ̂ ∗ ŝ, and that Φ̂s is supported on the interval [a,∞). Hence, by the definition of
the distributional Fourier transform, we obtain∫

R+

f̂Φ ŝ dλ =

∫
R
fΦs dλ =

∫
R
fΦs dλ =

∫
R+

f̂(Φ̂ ∗ ŝ) dλ.

Fubini’s theorem and the computational rule Φ̂(x) = Φ̂(−x) shows that the last integral above
equals ∫

R+

(f̂ ∗ Φ̂) ŝ dλ,

proving our claim about the structure of f̂Φ on R+.

Hence f̂Φ is a bounded continuous function which coincides with

f̂Φ(ζ) =

∫
R
f̂(x)Φ̂(ζ − x) dλ(x)

for ζ > 0. By a computation similar to the one in the proof of Lemma 4.1 one sees that Φ has the
Fourier transform

Φ̂(ζ) = |ζ|neζ1R−(ζ).

For such ζ, we estimate ∣∣f̂Φ(ζ)∣∣ ≤ ∫
R
|f̂(x)||ζ − x|neζ−x

1R−(ζ − x) dλ(x)

=

∫ ∞

ζ

|f̂(x)||ζ − x|neζ−x dλ(x)

=

∞∑
k=0

∫ ζ2k+1

ζ2k
|f̂(x)||ζ − x|neζ−x dλ(x).

We now make the rather rough estimate

|ζ − x|neζ−x ≤ ζ2(k+1)n, x ∈ [ζ2k, ζ2k+1],
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which gives ∣∣f̂Φ(ζ)∣∣ ≤ ∞∑
k=0

ρf̂ (ζ2
k)ζ2(k+1)n ≤ A

∞∑
k=0

e−c
√
ζ
√
2
k

ζ2(k+1)n

for some A > 0. The above sum can be readily estimated to be of order O
(
e−d

√
ζ) for some d > 0

slightly smaller than c. Since fm is the product of two integrable functions fΦ and h∗, we have

f̂m = f̂Φ ∗ ĥ∗,

where ĥ∗(ζ) = ĥ∗(−ζ) is non-zero only for ζ < 0. Note that h∗ is integrable on R, and so ĥ∗ is
bounded. We obtain

|f̂m(ζ)| ≤
∫
R

∣∣∣f̂Φ(x)ĥ∗(x− ζ)
∣∣∣ dλ(x)

≤ B

∫ ∞

ζ

e−d
√
x dλ(x) = O

(
e−d

√
ζ
)
,

where B is some positive constant. The desired estimate on ρ
f̂m

follows readily from this estimate.

□

By the above discussion, we have proved Theorem C.
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